On the convergence behavior of the restarted GMRES algorithm for solving nonsymmetric linear systems

The solution of nonsymmetric systems of linear equations continues to be a difficult problem. A main algorithm for solving nonsymmetric problems is restarted GMRES. The algorithm is based on restarting full GMRES every s iterations, for some integer s>0. This paper considers the impact of the restart frequency s on the convergence and work requirements of the method. It is shown that a good choice of this parameter can lead to reduced solution time, while an improper choice may hinder or preclude convergence. An adaptive procedure is also presented for determining automatically when to restart. The results of numerical experiments are presented.

[1]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[2]  H. V. D. Vorst,et al.  The rate of convergence of Conjugate Gradients , 1986 .

[3]  A. Greenbaum Comparison of splittings used with the conjugate gradient algorithm , 1979 .

[4]  W. Joubert,et al.  Necessary and sufficient conditions for the simplification of generalized conjugate-gradient algorithms , 1987 .

[5]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[6]  R. Freund,et al.  QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .

[7]  T. Manteuffel,et al.  A taxonomy for conjugate gradient methods , 1990 .

[8]  T. Manteuffel,et al.  Necessary and Sufficient Conditions for the Existence of a Conjugate Gradient Method , 1984 .

[9]  C. Lanczos An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .

[10]  P. K. W. Vinsome,et al.  Orthomin, an Iterative Method for Solving Sparse Sets of Simultaneous Linear Equations , 1976 .

[11]  Lloyd N. Trefethen,et al.  A Hybrid GMRES Algorithm for Nonsymmetric Linear Systems , 1992, SIAM J. Matrix Anal. Appl..

[12]  Lloyd N. Trefethen,et al.  How Fast are Nonsymmetric Matrix Iterations? , 1992, SIAM J. Matrix Anal. Appl..

[13]  Wayne Joubert,et al.  A Robust GMRES-Based Adaptive Polynomial Preconditioning Algorithm for Nonsymmetric Linear Systems , 1994, SIAM J. Sci. Comput..

[14]  T. Manteuffel An Iterative Method for Solving Nonsymmetric Linear Systems With Dynamic Estimation of Parameters , 1975 .

[15]  S. Eisenstat,et al.  Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .

[16]  W. Joubert,et al.  Parallelizable restarted iterative methods for nonsymmetric linear systems. part I: Theory , 1992 .

[17]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[18]  T. Manteuffel The Tchebychev iteration for nonsymmetric linear systems , 1977 .

[19]  S. Ashby Polynomial Preconditioning for Conjugate Gradient Methods , 1988 .

[20]  T. Manteuffel Adaptive procedure for estimating parameters for the nonsymmetric Tchebychev iteration , 1978 .

[21]  Wayne Joubert,et al.  Lanczos Methods for the Solution of Nonsymmetric Systems of Linear Equations , 1992, SIAM J. Matrix Anal. Appl..

[22]  R. Freund,et al.  Chebyshev polynomials are not always optimal , 1991 .

[23]  O. Axelsson,et al.  A restarted version of a generalized preconditioned conjugate gradient method , 1988 .

[24]  Thomas A. Manteuffel,et al.  Orthogonal error methods , 1987 .

[25]  W. Joubert,et al.  Iterative methods for nonsymmetric linear systems , 1990 .

[26]  R. Freund On polynomial preconditioning and asymptotic convergence factors for indefinite Hermitian matrices , 1991 .