A Novel Asymmetric Distribution with Power Tails

In this article, we propose a four-parameter asymmetric doubly Pareto-uniform (DPU) distribution with support (−∞, ∞) whose density and cumulative distribution functions are constructed by seamlessly concatenating the left and right Pareto tails with a uniform central part. Properties of the distribution are described and a maximum likelihood estimation (MLE) procedure for its parameters is obtained. Two illustrative examples of the MLE procedure are provided. The first example utilizes an i.i.d. sample of standardized log-differences of bi-monthly 30-year U.S. conventional mortgage interest rates (1971–2004). The second example deals with the height of 100 female Australian athletes.

[1]  F. Quintana,et al.  A New Class of Skew-Normal Distributions , 2004 .

[2]  Samuel Kotz,et al.  Beyond Beta: Other Continuous Families Of Distributions With Bounded Support And Applications , 2004 .

[3]  H. Levy,et al.  Asset Return Distributions and the Investment Horizon , 2004 .

[4]  S. Sheather Density Estimation , 2004 .

[5]  R. Lamm,et al.  Asymmetric Returns and Optimal Hedge Fund Portfolios , 2003 .

[6]  S. Satchell,et al.  Theory & Methods: Estimation of the Stochastic Volatility Model by the Empirical Characteristic Function Method , 2002 .

[7]  Jean-Philippe Bouchaud,et al.  Lévy Statistics and Laser Cooling: How Rare Events Bring Atoms to Rest , 2002 .

[8]  William J. Reed,et al.  The Double Pareto-Lognormal Distribution—A New Parametric Model for Size Distributions , 2004, WWW 2001.

[9]  Richard J. K. Taylor,et al.  A simultaneous measurement of the QCD colour factors and the strong coupling , 2001 .

[10]  J. L. Nolan Stable Distributions. Models for Heavy Tailed Data , 2001 .

[11]  S. Solomon,et al.  Power, Lévy, exponential and Gaussian-like regimes in autocatalytic financial systems , 2000, cond-mat/0008026.

[12]  S. Solomon,et al.  Market Ecology, Pareto Wealth Distribution and Leptokurtic Returns in Microscopic Simulation of the LLS Stock Market Model , 2000, cond-mat/0005416.

[13]  A. Azzalini,et al.  Statistical applications of the multivariate skew normal distribution , 2009, 0911.2093.

[14]  Yuichi Nagahara,et al.  The PDF and CF of Pearson type IV distributions and the ML estimation of the parameters , 1999 .

[15]  D. Sornette,et al.  Taming Large Events: Optimal Portfolio Theory for Strongly Fluctuating Assets , 1998 .

[16]  Andrew Matacz,et al.  Financial Modeling and Option Theory with the Truncated Levy Process , 1997, cond-mat/9710197.

[17]  O. Barndorff-Nielsen Normal Inverse Gaussian Distributions and Stochastic Volatility Modelling , 1997 .

[18]  Jon Danielsson Estimation of the Stochastic Volatility Models by Simulated Maximum Likelihood: C++ Code , 1996 .

[19]  J. Banks,et al.  Discrete-Event System Simulation , 1995 .

[20]  E. Eberlein,et al.  Hyperbolic distributions in finance , 1995 .

[21]  A. Goldman An Introduction to Regression Graphics , 1995 .

[22]  A. W. Kemp,et al.  Kendall's Advanced Theory of Statistics. , 1994 .

[23]  A. Izenman Recent Developments in Nonparametric Density Estimation , 1991 .

[24]  M. Kendall,et al.  Kendall's advanced theory of statistics , 1995 .

[25]  C. Read,et al.  Encyclopedia of Statistical Sciences, Vol. 4. Icing the Tails-Limit Theorems. , 1985 .

[26]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[27]  W. Elderton,et al.  Systems of Frequency Curves , 1969 .