Multivariate Subdivision Schemes And Divided Differences
暂无分享,去创建一个
[1] E. Catmull,et al. Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .
[2] David G. Kirkpatrick,et al. A Linear Algorithm for Determining the Separation of Convex Polyhedra , 1985, J. Algorithms.
[3] S. Dubuc. Interpolation through an iterative scheme , 1986 .
[4] Charles T. Loop,et al. Smooth Subdivision Surfaces Based on Triangles , 1987 .
[5] Charles A. Micchelli,et al. Computing surfaces invariant under subdivision , 1987, Comput. Aided Geom. Des..
[6] Nira Dyn,et al. Using parameters to increase smoothness of curves and surfaces generated by subdivision , 1990, Comput. Aided Geom. Des..
[7] C. D. Boor,et al. On multivariate polynomial interpolation , 1990 .
[8] I. Daubechies,et al. Two-scale difference equations II. local regularity, infinite products of matrices and fractals , 1992 .
[9] Rémi Abgrall,et al. On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation , 1994 .
[10] C. de Boor. A Multivariate Divided Diierence , 1995 .
[11] T. Sauer,et al. On multivariate Lagrange interpolation , 1995 .
[12] F. Holt. Toward a curvature-continuous stationary subdivision algorithm , 1996 .
[13] Hugues Hoppe,et al. Progressive meshes , 1996, SIGGRAPH.
[14] Thomas Kunkle. Multivariate Differences, Polynomials, and Splines , 1996 .
[15] D. Zorin. Stationary Subdivision and Multiresolution Surface Representations , 1997 .
[16] Charles K. Chui,et al. Swapping Edges of Arbitrary Triangulations to Achieve the Optimal Order of Approximation , 1997 .
[17] Malcolm A. Sabin,et al. Behaviour of recursive division surfaces near extraordinary points , 1998 .
[18] David P. Dobkin,et al. MAPS: multiresolution adaptive parameterization of surfaces , 1998, SIGGRAPH.
[19] Ruud van Damme,et al. Monotonicity preserving interpolatory subdivision schemes , 1999 .
[20] Joe Warren,et al. Subdivision Schemes for Variational Splines , 2000 .