Whole‐volume clustering of time series data from zebrafish brain calcium images via mixture modeling

Calcium is a ubiquitous messenger in neural signaling events. An increasing number of techniques are enabling visualization of neurological activity in animal models via luminescent proteins that bind to calcium ions. These techniques generate large volumes of spatially correlated time series. A model-based functional data analysis methodology via Gaussian mixtures is suggested for the clustering of data from such visualizations is proposed. The methodology is theoretically justified and a computationally efficient approach to estimation is suggested. An example analysis of a zebrafish imaging experiment is presented.

[1]  Faicel Chamroukhi,et al.  An Unsupervised Approach for Automatic Activity Recognition Based on Hidden Markov Model Regression , 2013, IEEE Transactions on Automation Science and Engineering.

[2]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[3]  Geoffrey J. McLachlan,et al.  Mixtures of spatial spline regressions for clustering and classification , 2016, Comput. Stat. Data Anal..

[4]  R. C. Bradley Basic properties of strong mixing conditions. A survey and some open questions , 2005, math/0511078.

[5]  Marco Enea,et al.  Fitting Linear and Generalized Linear Models to Large Data Sets , 2015 .

[6]  M. Anusha,et al.  Big Data-Survey , 2016 .

[7]  I. Prucha,et al.  Central Limit Theorems and Uniform Laws of Large Numbers for Arrays of Random Fields. , 2009, Journal of econometrics.

[8]  J. A. Hartigan,et al.  A k-means clustering algorithm , 1979 .

[9]  Geoffrey J McLachlan,et al.  Spatial clustering of time series via mixture of autoregressions models and Markov random fields , 2016, 1601.03517.

[10]  M. Cugmas,et al.  On comparing partitions , 2015 .

[11]  Andrew L. Janke,et al.  Maximum Pseudolikelihood Estimation for Model-Based Clustering of Time Series Data , 2016, Neural Computation.

[12]  P. Massart,et al.  Concentration inequalities and model selection , 2007 .

[13]  C. Matr'an,et al.  A general trimming approach to robust Cluster Analysis , 2008, 0806.2976.

[14]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[15]  Luis Angel García-Escudero,et al.  tclust: An R Package for a Trimming Approach to Cluster Analysis , 2012 .

[16]  P. Deb Finite Mixture Models , 2008 .

[17]  Jie Peng,et al.  Distance-based clustering of sparsely observed stochastic processes, with applications to online auctions , 2008, 0805.0463.

[18]  Dirk Eddelbuettel,et al.  Seamless R and C++ Integration with Rcpp , 2013 .

[19]  R. Mann,et al.  Swept confocally-aligned planar excitation (SCAPE) microscopy for high speed volumetric imaging of behaving organisms , 2014, Nature Photonics.

[20]  D. Andrews Generic Uniform Convergence , 1992, Econometric Theory.

[21]  Nuno Constantino Castro,et al.  Time Series Data Mining , 2009, Encyclopedia of Database Systems.

[22]  Gregory D. Marquart,et al.  A 3D Searchable Database of Transgenic Zebrafish Gal4 and Cre Lines for Functional Neuroanatomy Studies , 2015, Front. Neural Circuits.

[23]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[24]  Geoffrey J. McLachlan,et al.  Discriminant Analysis and Statistical Pattern Recognition: McLachlan/Discriminant Analysis & Pattern Recog , 2005 .

[25]  Philipp J. Keller,et al.  Whole-brain functional imaging at cellular resolution using light-sheet microscopy , 2013, Nature Methods.

[26]  Kui Wang,et al.  A Mixture model with random-effects components for clustering correlated gene-expression profiles , 2006, Bioinform..

[27]  Matthew O. Parker,et al.  Molecular psychiatry of zebrafish , 2014, Molecular Psychiatry.

[28]  Padhraic Smyth,et al.  Trajectory clustering with mixtures of regression models , 1999, KDD '99.

[29]  K. Svoboda,et al.  Imaging Calcium Concentration Dynamics in Small Neuronal Compartments , 2004, Science's STKE.

[30]  G. McLachlan Discriminant Analysis and Statistical Pattern Recognition , 1992 .

[31]  Fernando Calamante,et al.  Enhanced characterization of the zebrafish brain as revealed by super-resolution track-density imaging , 2013, Brain Structure and Function.

[32]  Dit-Yan Yeung,et al.  Time series clustering with ARMA mixtures , 2004, Pattern Recognit..

[33]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[34]  P. Massart,et al.  Minimal Penalties for Gaussian Model Selection , 2007 .

[35]  Catherine A. Sugar,et al.  Clustering for Sparsely Sampled Functional Data , 2003 .

[36]  Andrew L. Janke,et al.  False Discovery Rate Control in Magnetic Resonance Imaging Studies via Markov Random Fields , 2014, IEEE Transactions on Medical Imaging.

[37]  Constantin Zalinescu,et al.  Set-valued Optimization - An Introduction with Applications , 2014, Vector Optimization.

[38]  Giuliano Galimberti,et al.  Classification Trees for Ordinal Responses in R: The rpartScore Package , 2012 .

[39]  J. A. Cuesta-Albertos,et al.  Trimmed $k$-means: an attempt to robustify quantizers , 1997 .

[40]  Rafael Yuste,et al.  Imaging calcium dynamics in dendritic spines , 1996, Current Opinion in Neurobiology.

[41]  Philipp J. Keller,et al.  Light-sheet functional imaging in fictively behaving zebrafish , 2014, Nature Methods.

[42]  J. E. Glynn,et al.  Numerical Recipes: The Art of Scientific Computing , 1989 .

[43]  Wenxin Jiang,et al.  On the identifiability of mixtures-of-experts , 1999, Neural Networks.

[44]  Michel Dojat,et al.  Temporal and Spatial Independent Component Analysis for fMRI Data Sets Embedded in the AnalyzeFMRI R Package , 2011 .

[45]  Geoffrey J McLachlan,et al.  Faster Functional Clustering via Gaussian Mixture Models , 2016, 1608.05481.

[46]  Herwig Baier,et al.  Descending Control of Swim Posture by a Midbrain Nucleus in Zebrafish , 2014, Neuron.

[47]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[48]  C. Abraham,et al.  Unsupervised Curve Clustering using B‐Splines , 2003 .

[49]  Marie Frei,et al.  Functional Data Analysis With R And Matlab , 2016 .

[50]  Kui Wang,et al.  Clustering of time-course gene expression profiles using normal mixture models with autoregressive random effects , 2012, BMC Bioinformatics.

[51]  T. Warren Liao,et al.  Clustering of time series data - a survey , 2005, Pattern Recognit..

[52]  Bertrand Michel,et al.  Slope heuristics: overview and implementation , 2011, Statistics and Computing.

[53]  Richard C. Bradley,et al.  A caution on mixing conditions for random fields , 1989 .

[54]  M. Kosorok Introduction to Empirical Processes and Semiparametric Inference , 2008 .

[55]  Geoffrey J. McLachlan,et al.  Mixture models for clustering multilevel growth trajectories , 2014, Comput. Stat. Data Anal..

[56]  Hans-Georg Müller,et al.  Functional Data Analysis , 2016 .

[57]  R. Burgoyne,et al.  Neuronal calcium sensor proteins: generating diversity in neuronal Ca2+ signalling , 2007, Nature Reviews Neuroscience.

[58]  G. Celeux,et al.  Mixture of linear mixed models for clustering gene expression profiles from repeated microarray experiments , 2005 .

[59]  George A. F. Seber,et al.  A matrix handbook for statisticians , 2007 .

[60]  Ethan K. Scott,et al.  Functional Profiles of Visual-, Auditory-, and Water Flow-Responsive Neurons in the Zebrafish Tectum , 2016, Current Biology.

[61]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[62]  H. White Asymptotic theory for econometricians , 1985 .