Surface redox polymerized SPEEK–MO2–PANI (M = Si, Zr and Ti) composite polyelectrolyte membranes impervious to methanol

Abstract We reported sulfonated poly(ether ether ketone) (SPEEK, 61% degree of sulfonation)–metal oxides (MO 2 :SiO 2 , TiO 2 and ZrO 2 )–polyaniline composite membranes. Metal oxides were incorporated into the swelled SPEEK membrane by sol–gel method and cured by thermal treatment. SPEEK–metal oxide membranes surfaces were modified with polyaniline (PANI) by a redox polymerization process. It was observed that water retention capacity of membrane was increased and methanol permeability was reduced due to synergetic effect of metal oxides and surface modification with polyaniline. These composite membranes showed extremely low methanol permeability (1.9–1.3 × 10 −7  cm 2  s −1 ), which was lower than till reported values either for SPEEK–metal oxide or SPEEK/PANI membranes. Relatively high selectivity parameter (SP) values at 343 K of these membranes, especially S–SiO 2 –PANI and S–TiO 2 –PANI, indicated their great advantages over Nafion117 (N117) membrane for targeting on moderate temperature applications due to the synergetic effect of MO 2 and PANI in SPEEK matrix. S–TiO 2 –PANI and N117 showed comparable cell performance in direct methanol fuel cell (DMFC).

[1]  Steven Holdcroft,et al.  Effect of water on the low temperature conductivity of polymer electrolytes. , 2006, The journal of physical chemistry. B.

[2]  L. Klein,et al.  Methods for modifying proton exchange membranes using the sol–gel process , 2005 .

[3]  K. Yoon,et al.  Nafion/mordenite hybrid membrane for high-temperature operation of polymer electrolyte membrane fuel cell , 2003 .

[4]  K. Miyatake,et al.  Poly(arylene ether) Ionomers Containing Sulfofluorenyl Groups for Fuel Cell Applications , 2005 .

[5]  R. Mülhaupt,et al.  Partially sulfonated poly(arylene ether sulfone) : a versatile proton conducting membrane material for modern energy conversion technologies , 1993 .

[6]  G. Gohil,et al.  Sulfonated poly(ether ether ketone)/polyaniline composite proton-exchange membrane , 2006 .

[7]  P. J. Sebastian,et al.  A modified Nafion membrane with in situ polymerized polypyrrole for the direct methanol fuel cell , 2003 .

[8]  S. Moon,et al.  Highly charged proton exchange membranes prepared by using water soluble polymer blends for fuel cells , 2005 .

[9]  V. Luca,et al.  Electrosynthesis of Macroporous Polyaniline−V2O5 Nanocomposites and Their Unusual Magnetic Properties , 2006 .

[10]  Jean-Yves Sanchez,et al.  Ionomeric membranes for proton exchange membrane fuel cell (PEMFC): sulfonated polysulfone associated with phosphatoantimonic acid , 2001 .

[11]  K. Friedrich,et al.  Transport properties of ionomer composite membranes for direct methanol fuel cells , 2002 .

[12]  V. Ramani,et al.  SPEEK/functionalized silica composite membranes for polymer electrolyte fuel cells , 2007 .

[13]  Signe Kjelstrup,et al.  Transport and equilibrium properties of Nafion® membranes with H+ and Na+ ions , 1998 .

[14]  Tao Zhang,et al.  Function and Characterization of Metal Oxide−Nafion Composite Membranes for Elevated-Temperature H2/O2 PEM Fuel Cells , 2006 .

[15]  Prabhuram Joghee,et al.  Preparation and characterization of hybrid Nafion–silica membrane doped with phosphotungstic acid for high temperature operation of proton exchange membrane fuel cells , 2004 .

[16]  D. Bélanger,et al.  Characterization and transport properties of Nafion/polyaniline composite membranes. , 2005, The journal of physical chemistry. B.

[17]  S. Holdcroft,et al.  Electrochemical oxygen reduction at composite films of Nafion®, polyaniline and Pt , 1999 .

[18]  E. Higuchi,et al.  Tuned polymer electrolyte membranes based on aromatic polyethers for fuel cell applications. , 2007, Journal of the American Chemical Society.

[19]  S. Srinivasan,et al.  A comparison of physical properties and fuel cell performance of Nafion and zirconium phosphate/Nafion composite membranes , 2003, physics/0310029.

[20]  M. Guglielmi,et al.  Mixed electronic and ionic conductors: a new route to Nafion®-doped polyaniline , 1995 .

[21]  M. Hickner,et al.  Alternative polymer systems for proton exchange membranes (PEMs). , 2004, Chemical reviews.

[22]  O. Park,et al.  Proton-conducting composite membranes derived from sulfonated hydrocarbon and inorganic materials , 2003 .

[23]  Zhe Wang,et al.  SPEEKK/polyaniline (PANI) composite membranes for direct methanol fuel cell usages , 2006 .

[24]  V. Shahi Highly charged proton-exchange membrane : Sulfonated poly(ether sulfone)-silica polyelectrolyte composite membranes for fuel cells , 2007 .

[25]  P. Pickup,et al.  Characteristics of Polypyrrole/Nafion Composite Membranes in a Direct Methanol Fuel Cell , 2003 .

[26]  B. Pivovar,et al.  Sulfonated naphthalene dianhydride based polyimide copolymers for proton-exchange-membrane fuel cells , 2005 .

[27]  A. Pires,et al.  Mixed conductive blends of SPEEK/PANI , 2005 .

[28]  P. Mazur,et al.  Non-equilibrium thermodynamics, , 1963 .

[29]  S. K. Thampy,et al.  Preparation and electrochemical characterization of sulfonated interpolymer of polyethylene and styrene–divinylbenzene copolymer membranes , 2000 .

[30]  S. Holdcroft,et al.  Synthesis of Sulfonated Polysulfone-block-PVDF Copolymers: Enhancement of Proton Conductivity in Low Ion Exchange Capacity Membranes , 2004 .

[31]  M. Guiver,et al.  Preparation of ion exchange membranes for fuel cell based on crosslinked poly(vinyl alcohol) with poly(styrene sulfonic acid-co-maleic acid) , 2006 .

[32]  R. K. Nagarale,et al.  Phosphonic acid functionalized aminopropyl triethoxysilane–PVA composite material: organic–inorganic hybrid proton-exchange membranes in aqueous media , 2005 .

[33]  Chang-Soo Kim,et al.  Sulfonated poly(ether ether ketone)-based composite membrane for polymer electrolyte membrane fuel cells , 2006 .

[34]  Tatsuhiro Okada,et al.  Mechanisms of Ion and Water Transport in Perfluorosulfonated Ionomer Membranes for Fuel Cells , 2004 .

[35]  F. C. Wilson,et al.  The morphology in nafion† perfluorinated membrane products, as determined by wide- and small-angle x-ray studies , 1981 .

[36]  B. P. Tripathi,et al.  SPEEK-zirconium hydrogen phosphate composite membranes with low methanol permeability prepared by electro-migration and in situ precipitation. , 2007, Journal of colloid and interface science.

[37]  J. Kerres Development of ionomer membranes for fuel cells , 2001 .

[38]  V. Silva,et al.  Zirconium oxide hybrid membranes for direct methanol fuel cells—Evaluation of transport properties , 2006 .

[39]  Won-Yong Lee,et al.  A study on fabrication of sulfonated poly(ether ether ketone)-based membrane-electrode assemblies for polymer electrolyte membrane fuel cells , 2008 .

[40]  G. Socrates,et al.  Infrared Characteristic Group Frequencies , 1980 .

[41]  A. Dicks,et al.  Nafion/polyaniline/silica composite membranes for direct methanol fuel cell application , 2007 .

[42]  Robert B. Moore,et al.  Novel Nafion/ORMOSIL Hybrids via in Situ Sol-Gel Reactions. 1. Probe of ORMOSIL Phase Nanostructures by Infrared Spectroscopy , 1995 .

[43]  Suzana P. Nunes,et al.  Inorganic modification of proton conductive polymer membranes for direct methanol fuel cells , 2002 .

[44]  Kenneth A. Mauritz,et al.  Organic-Inorganic Hybrid Materials: Perfluorinated Ionomers as Sol-Gel Polymerization Templates for Inorganic Alkoxides , 1998 .

[45]  Anita J. Hill,et al.  Physical and electrochemical characterization of nanocomposite membranes of Nafion and functionalized silicon oxide , 2007 .

[46]  K. Friedrich,et al.  Modified Nafion®-based membranes for use in direct methanol fuel cells , 2002 .

[47]  H. Na,et al.  SPEEK/epoxy resin composite membranes in situ polymerization for direct methanol fell cell usages , 2007 .

[48]  N. Lakshminarayanaiah,et al.  Transport phenomena in membranes , 1969 .

[49]  Y. Lee,et al.  Crosslinked poly(vinyl alcohol) membranes containing sulfonic acid group: proton and methanol transport through membranes , 2004 .

[50]  T. Okada,et al.  New highly proton conductive polymer membranes poly(vinyl alcohol)–2-acrylamido-2-methyl-1-propanesulfonic acid (PVA–PAMPS) , 2005 .