Efficient System Identification of Heterogeneous Distributed Systems via a Structure Exploiting Extended Kalman Filter

We consider the problem of computationally efficient system identification of spatially heterogeneous distributed systems. We show how to parametrize distributed interconnected system models such that an extended Kalman Filter can be used for parameter estimation (system identification) in linear computational complexity with respect to the number of subsystems. Furthermore, the identified model will preserve the special sequentially-semi separable (SSS) structure, allowing for the use of efficient structured controller synthesis routines.

[1]  Fen Wu,et al.  Distributed Parameter Dependent Modeling and Control of Flexible Structures , 2002 .

[2]  J.M. Fowler,et al.  A formation flight experiment , 2003, IEEE Control Systems.

[3]  P. Dewilde,et al.  Time-Varying Systems and Computations , 1998 .

[4]  Geir E. Dullerud,et al.  Distributed control design for spatially interconnected systems , 2003, IEEE Trans. Autom. Control..

[5]  Richard D. Braatz,et al.  Control relevant identification of sheet and film processes , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[6]  Jesper Tegnér,et al.  Reverse engineering gene networks using singular value decomposition and robust regression , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Tomas McKelvey,et al.  System identification using an over-parametrized model class-improving the optimization algorithm , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[8]  Iven M. Y. Mareels,et al.  Control of Large-Scale Irrigation Networks , 2007, Proceedings of the IEEE.

[9]  Dimitry M. Gorinevsky,et al.  Feedback controller design for a spatially distributed system: the paper machine problem , 2003, IEEE Trans. Control. Syst. Technol..

[10]  Geir E. Dullerud,et al.  Distributed control of heterogeneous systems , 2004, IEEE Transactions on Automatic Control.

[11]  V. Verdult,et al.  Filtering and System Identification: A Least Squares Approach , 2007 .

[12]  Anders Rantzer,et al.  On Prize Mechanisms in linear quadratic team theory , 2007, 2007 46th IEEE Conference on Decision and Control.

[13]  Michel Verhaegen,et al.  Subspace identification of circulant systems , 2008, Autom..

[14]  Michel Verhaegen,et al.  Subspace identification of distributed, decomposable systems , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[15]  Francesco Borrelli,et al.  Decentralized receding horizon control for large scale dynamically decoupled systems , 2009, Autom..

[16]  Michel Verhaegen,et al.  Distributed Control in Multiple Dimensions: A Structure Preserving Computational Technique , 2011, IEEE Transactions on Automatic Control.

[17]  M. Kishida,et al.  Optimal control of cellular uptake in tissue engineering , 2008, 2008 American Control Conference.

[18]  Michel Verhaegen,et al.  Distributed Control: A Sequentially Semi-Separable Approach for Spatially Heterogeneous Linear Systems , 2009, IEEE Transactions on Automatic Control.

[19]  R. Braatz,et al.  SVD Controllers for Hz-, Ho3- and p-optimal Control* , 1997 .

[20]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[21]  Boris N. Khoromskij,et al.  Solution of Large Scale Algebraic Matrix Riccati Equations by Use of Hierarchical Matrices , 2003, Computing.

[22]  P.G. Voulgaris,et al.  Distributed control of large segmented telescopes , 2006, 2006 American Control Conference.

[23]  A. Ishai,et al.  Effective connectivity within the distributed cortical network for face perception. , 2007, Cerebral cortex.

[24]  P. Sharma,et al.  Modelling and distributed control of mobile offshore bases , 2004, Proceedings of the 2004 American Control Conference.

[25]  Michel Verhaegen,et al.  Filtering and System Identification: Frontmatter , 2007 .

[26]  Justin K. Rice Efficient Algorithms for Distributed Control: A Structured Matrix Approach , 2010 .

[27]  Michel Verhaegen,et al.  Distributed computations and control in multi-agent systems , 2000, 2009 4th International Conference on Autonomous Robots and Agents.

[28]  R. D'Andrea Linear matrix inequalities, multidimensional system optimization, and control of spatially distributed systems: an example , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[29]  T. Westerlund,et al.  Remarks on "Asymptotic behavior of the extended Kalman filter as a parameter estimator for linear systems" , 1980 .

[30]  Azeem Sarwar,et al.  Spatiotemporal systems: gradual variations, identification, adaptation and robustness , 2009 .

[31]  Fernando Paganini,et al.  Distributed control of spatially invariant systems , 2002, IEEE Trans. Autom. Control..

[32]  Michel Verhaegen,et al.  Structure preserving model order reduction of heterogeneous 1-D distributed systems , 2009, 2009 American Control Conference.

[33]  Fen Wu,et al.  Distributed control for interconnected linear parameter-dependent systems , 2003 .

[34]  Richard D. Braatz,et al.  SVD controllers for H2-, H∞- and μ-optimal control , 1997, Autom..

[35]  Kazuyuki Aihara,et al.  Noise-induced cooperative behavior in a multicell system , 2005, Bioinform..

[36]  Herbert Werner,et al.  Identification of spatially interconnected systems , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[37]  Petros G. Voulgaris,et al.  Spatially invariant systems: identification and adaptation , 2009 .

[38]  M. Arcak,et al.  Remarks on the stability of spatially distributed systems with a cyclic interconnection structure , 2007, 2007 American Control Conference.