Dynamic hemivariational inequality modeling viscoelastic contact problem with normal damped response and friction

In this article we examine an evolution problem, which describes the dynamic contact of a viscoelastic body and a foundation. The contact is modeled by a general normal damped response condition and a friction law, which are nonmonotone, possibly multivalued and have the subdifferential form. First we derive a formulation of the model in the form of a multidimensional hemivariational inequality. Then we establish a priori estimates and we prove the existence of weak solutions by using a surjectivity result for pseudomonotone operators. Finally, we deliver conditions under which the solution of the hemivariational inequality is unique.

[1]  P. Panagiotopoulos,et al.  On a Type of Hyperbolic Variational–Hemivariational Inequalities , 1999 .

[2]  P. Panagiotopoulos Inequality problems in mechanics and applications , 1985 .

[3]  P. Panagiotopoulos Inequality Problems in Mechanics and Applications: Convex and Nonconvex Energy Functions , 1985 .

[4]  P. Panagiotopoulos,et al.  Finite Element Method for Hemivariational Inequalities: Theory, Methods and Applications , 1999 .

[5]  Panagiotis D. Panagiotopoulos,et al.  Hemivariational Inequalities: Applications in Mechanics and Engineering , 1993 .

[6]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[7]  P. Panagiotopoulos,et al.  Optimal control of hemivariational inequalities , 1989 .

[8]  Peter Hess,et al.  Nonlinear mappings of monotone type in Banach spaces , 1972 .

[9]  J. Aubin,et al.  Differential inclusions set-valued maps and viability theory , 1984 .

[10]  E. Zeidler Nonlinear Functional Analysis and Its Applications: II/ A: Linear Monotone Operators , 1989 .

[11]  I. Hlavácek,et al.  Mathematical Theory of Elastic and Elasto Plastic Bodies: An Introduction , 1981 .

[12]  M. Sofonea,et al.  A viscoelastic contact problem with normal damped response and friction , 2000 .

[13]  E. Boschi Recensioni: J. L. Lions - Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, Gauthier-Vi;;ars, Paris, 1969; , 1971 .

[14]  Frank H. Clarke,et al.  Shadow Prices and Duality for a Class of Optimal Control Problems , 1979 .

[15]  Kenneth Kuttler Dynamic friction contact problems for general normal and friction laws , 1997 .

[16]  Guo Xingming THE INITIAL BOUNDARY VALUE PROBLEM OF A MIXED-TYPED HEMIVARIATIONAL INEQUALITY , 2001 .

[17]  Stanislaw Migórski,et al.  Boundary Hemivariational Inequalities of Hyperbolic Type and Applications , 2005, J. Glob. Optim..

[18]  Jaroslav Haslinger,et al.  Finite Element Method for Hemivariational Inequalities , 1999 .

[19]  L. Roobol Mean field calculation of the3He melting curve in magnetic field using an exchange hamiltonian with up to 6-spin exchange , 1996 .

[20]  M. Smolka,et al.  An Existence Theorem for Wave-Type Hyperbolic Hemivariational Inequalities , 2002 .

[21]  Louis B. Rall,et al.  Nonlinear Functional Analysis and Applications , 1971 .

[22]  Kung-Ching Chang,et al.  Variational methods for non-differentiable functionals and their applications to partial differential equations , 1981 .

[23]  J. Lions,et al.  Les inéquations en mécanique et en physique , 1973 .

[24]  M. Shillor,et al.  SET-VALUED PSEUDOMONOTONE MAPS AND DEGENERATE EVOLUTION INCLUSIONS , 1999 .

[25]  Mircea Sofonea,et al.  A QUASISTATIC CONTACT PROBLEM WITH DIRECTIONAL FRICTION AND DAMPED RESPONSE , 1998 .

[26]  S. Migórski Existence and convergence results for evolution hemivariational inequalities , 2000 .

[27]  P. Panagiotopoulos,et al.  Dynamic Hemivariational Inequalities and Their Applications , 1999 .

[28]  P. D. Panagiotopoulos,et al.  Mathematical Theory of Hemivariational Inequalities and Applications , 1994 .

[29]  J. Jarusek Dynamic contact problems with given friction for viscoelastic bodies , 1996 .

[30]  P. D. Panagiotopoulos,et al.  Coercive and semicoercive hemivariational inequalities , 1991 .

[31]  Dumitru Motreanu,et al.  Minimax Theorems and Qualitative Properties of the Solutions of Hemivariational Inequalities , 1998 .

[32]  Nikolaos S. Papageorgiou,et al.  Existence of solutions and periodic solutions for nonlinear evolution inclusions , 1999 .

[33]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[34]  D. Goeleven,et al.  Hyperbolic Hemivariational Inequality and Nonlinear Wave Equation with Discontinuities , 2001 .

[35]  Mircea Sofonea,et al.  A Dynamic Frictional Contact Problem with Normal Damped Response , 2002 .

[36]  Mircea Sofonea,et al.  A quasistatic viscoelastic contact problem with friction , 2000 .

[37]  P. D. Panagiotopoulos,et al.  Modelling of nonconvex nonsmooth energy problems: dynamic hemivariational inequalities with impact effects , 1995 .

[38]  Monotonicity methods for nonlinear evolution equations , 1996 .