Textural analysis for the detection of dust clouds from infrared satellite images

The remote sensing constitutes a vast field of study whose repercussions are many and varied on environmental management. The phenomenon of dust clouds is a major climatic event in Africa. But the observation means of this phenomenon are still too much limited. The development of an approach consisting in the detection of dust clouds from satellite images can be a solution. In this work, we present a new approach for dust clouds detection in the infrared images coming from the METEOSAT satellite. It is then proved necessary of finding automatic or semi-automatic analysis methods to assist their detection and interpretation. Thus we are interested in image fusion methods for detection structures in the images. In this paper, we present some statistical methods which enable to extract texture features from the images. Then, we describe the method used for selection the best attributes for the images segmentation into three classes: "water clouds", "ocean" and "continent". We then use a method which enable us to segment the class "continent" of the image for dust clouds detection. Finally, we compare our results with another one which shows the zone of presence or absence of dust clouds. This comparison shows that we are in concord because visually, we have a good analogy of shape on the dust clouds zone as well as on the part without dust clouds.

[1]  Michel Legrand,et al.  Satellite detection of dust using the IR imagery of Meteosat: 1. Infrared difference dust index , 2001 .

[2]  Toby N. Carlson,et al.  Atmospheric Turbidity in Saharan Dust Outbreaks as Determined by Analyses of Satellite Brightness Data , 1979 .

[3]  B. Bonnel,et al.  Thermal Impact of Saharan Dust over Land. Part I: Simnulation , 1992 .

[4]  Mark J. Carlotto,et al.  Histogram Analysis Using a Scale-Space Approach , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  M. Legrand Étude des aérosols sahariens au dessus de l'Afrique à l'aide du canal à 10 microns de Météosat : visualisation, interprétation et modélisation , 1990 .

[6]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[7]  Kuo-Chin Fan,et al.  Multi-modal gray-level histogram modeling and decomposition , 2002, Image Vis. Comput..

[8]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[9]  S. Pal,et al.  Multipeak histogram analysis in region splitting: a regularisation problem , 1991 .

[10]  Didier Tanré,et al.  On the satellite retrieval of Saharan dust optical thickness over land: Two different approaches , 1991 .

[11]  A. Bayoko,et al.  Détection des nuages de poussières sur les images satellitaires Météosat et leur utilisation comme traceur pour l'identification des zones de déflation des sols par érosion éolienne , 1996 .

[13]  Catherine A. Shipp A study on diversity in classifier ensembles , 2004 .

[14]  Didier Orange,et al.  Le point sur les observations quotidiennes des brumes sèches au Sénégal de 1984 à 1991 , 1991 .

[15]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[16]  Christophe Rosenberger,et al.  Mise en oeuvre d'un système adaptatif de segmentation d'images , 1999 .

[17]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[18]  Suzie Vachon,et al.  Le traitement des images , 2007 .

[19]  Hamadou Soumana Apport de la télédétection spatiale et des systèmes d'information géographique à la préparation d'un cadastre polyvalent cas de la région de Niamey (Niger) , 1999 .

[20]  G. d’Almeida,et al.  A model for Saharan dust transport , 1986 .

[21]  Oscar Viveros Cancino Analyse du milieu urbain par une approche de fusion de données satellitaires optiques et radar , 2003 .

[22]  Kidiyo Kpalma Analyse fractale de textures naturelles dans un contexte multiresolution. Application a la segmentation d'images multiresolution , 1992 .

[23]  Claude Thierry N'Doume Traitement de l'imagerie meteosat IR pour l'observation des aérosols désertiques au-dessus de l'Afrique : optimisation, validation et application à l'établissement des distributions spatio-temporelles , 1993 .