No-Rainbow Problem and the Surjective Constraint Satisfaction Problem

The Surjective Constraint Satisfaction Problem (SCSP) is the problem of deciding whether there exists a surjective assignment to a set of variables subject to some specified constraints. In this paper we show that one of the most popular variants of the SCSP, called No-Rainbow Problem, is NP-Hard. Additionally, we disprove the conjecture saying that the SCSP over a constraint language $\Gamma$ is equivalent to the CSP over the same language with constants. Our counter example also shows that the complexity of the SCSP cannot be described in terms of polymorphisms of the constraint language.

[1]  Huishan Zhou,et al.  About the upper chromatic number of a co-hypergraph , 2000, Discret. Math..

[2]  Manuel Bodirsky,et al.  Constraint satisfaction with infinite domains , 2004 .

[3]  Narayan Vikas Algorithms for Partition of Some Class of Graphs under Compaction and Vertex-Compaction , 2012, Algorithmica.

[4]  Simone Dantas,et al.  2k2-partition of Some Classes of Graphs , 2012, Discret. Appl. Math..

[5]  Narayan Vikas,et al.  Computational complexity of compaction to irreflexive cycles , 2004, J. Comput. Syst. Sci..

[6]  Vitaly I. Voloshin,et al.  The mixed hypergraphs , 1993, Comput. Sci. J. Moldova.

[7]  Petr A. Golovach,et al.  Surjective H-Colouring: New Hardness Results , 2017, CiE.

[8]  NARAYAN VIKAS,et al.  Computational Complexity of Compaction to Reflexive Cycles , 2002, SIAM J. Comput..

[9]  Takehiro Ito,et al.  On disconnected cuts and separators , 2011, Discret. Appl. Math..

[10]  Narayan Vikas,et al.  Computational Complexity of Graph Partition under Vertex-Compaction to an Irreflexive Hexagon , 2017, MFCS.

[11]  Narayan Vikas,et al.  A complete and equal computational complexity classification of compaction and retraction to all graphs with at most four vertices and some general results , 2005, J. Comput. Syst. Sci..

[12]  Leslie Ann Goldberg,et al.  The Complexity of Counting Surjective Homomorphisms and Compactions , 2017, SODA.

[13]  Andrei A. Bulatov,et al.  A Dichotomy Theorem for Nonuniform CSPs , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[14]  Nadia Creignou,et al.  On Generating All Solutions of Generalized Satisfiability Problems , 1997, RAIRO Theor. Informatics Appl..

[15]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[16]  Narayan Vikas Computational Complexity Relationship between Compaction, Vertex-Compaction, and Retraction , 2017, IWOCA.

[17]  Daniel Král,et al.  Coloring Mixed Hypertrees , 2000, WG.

[18]  Takehiro Ito,et al.  Parameterizing cut sets in a graph by the number of their components , 2009, Theor. Comput. Sci..

[19]  Barnaby Martin,et al.  The complexity of surjective homomorphism problems - a survey , 2011, Discret. Appl. Math..

[20]  Tomás Feder,et al.  The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory , 1999, SIAM J. Comput..

[21]  Celina M. H. de Figueiredo,et al.  2K2 vertex-set partition into nonempty parts , 2010, Discret. Math..

[22]  Daniël Paulusma,et al.  Covering graphs with few complete bipartite subgraphs , 2007, Theor. Comput. Sci..

[23]  Jian Song,et al.  Computing vertex-surjective homomorphisms to partially reflexive trees , 2011, Theor. Comput. Sci..

[24]  Hubie Chen Algebraic Global Gadgetry for Surjective Constraint Satisfaction , 2020, ArXiv.

[25]  Sanjeev Khanna,et al.  Complexity classifications of Boolean constraint satisfaction problems , 2001, SIAM monographs on discrete mathematics and applications.

[26]  Dmitriy Zhuk,et al.  A Proof of CSP Dichotomy Conjecture , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[27]  Narayan Vikas,et al.  Computational complexity of compaction to cycles , 1999, SODA '99.

[28]  Andrei A. Bulatov,et al.  A dichotomy theorem for constraint satisfaction problems on a 3-element set , 2006, JACM.

[29]  Daniël Paulusma,et al.  The computational complexity of disconnected cut and 2K2-partition , 2011, J. Comb. Theory, Ser. B.

[30]  Hubie Chen An algebraic hardness criterion for surjective constraint satisfaction , 2014, ArXiv.