$$\varepsilon $$ε-Mnets: Hitting Geometric Set Systems with Subsets
暂无分享,去创建一个
[1] A. M. Macbeath,et al. A THEOREM ON NON-HOMOGENEOUS LATTICES' , 1952 .
[2] Jirí Matousek,et al. Efficient partition trees , 1991, SCG '91.
[3] Jiri Matousek,et al. Lectures on discrete geometry , 2002, Graduate texts in mathematics.
[4] David Haussler,et al. Epsilon-nets and simplex range queries , 1986, SCG '86.
[5] Jirí Matousek,et al. Reporting Points in Halfspaces , 1992, Comput. Geom..
[6] C. A. Rogers,et al. The directions of the line segments and of the r -dimensional balls on the boundary of a convex body in Euclidean space , 1970 .
[7] J. Matousek,et al. Geometric Discrepancy: An Illustrated Guide , 2009 .
[8] Guilherme Dias da Fonseca,et al. Optimal area-sensitive bounds for polytope approximation , 2012, SoCG '12.
[9] BORIS ARONOV,et al. Small-size ε-nets for axis-parallel rectangles and boxes , 2009, STOC '09.
[10] Nabil H. Mustafa. A Simple Proof of the Shallow Packing Lemma , 2016, Discrete & Computational Geometry.
[11] J. Pach,et al. Combinatorial geometry , 1995, Wiley-Interscience series in discrete mathematics and optimization.
[12] Jeong Hyun Kang,et al. Combinatorial Geometry , 2006 .
[13] Saurabh Ray,et al. New existence proofs ε-nets , 2008, SCG '08.
[14] M. Sharir,et al. State of the Union ( of Geometric Objects ) : A Review ∗ , 2007 .
[15] János Komlós,et al. Almost tight bounds forɛ-Nets , 1992, Discret. Comput. Geom..
[16] Nabil H. Mustafa,et al. Near-Optimal Generalisations of a Theorem of Macbeath , 2014, STACS.
[17] János Pach,et al. Tight lower bounds for the size of epsilon-nets , 2010, SoCG '11.
[18] I Barany,et al. Random polytopes, convex bodies, and approximation , 2007 .
[19] Nabil H. Mustafa,et al. New Lower Bounds for epsilon-Nets , 2016, SoCG.
[20] Imre Bárány,et al. CONVEX-BODIES, ECONOMIC CAP COVERINGS, RANDOM POLYTOPES , 1988 .
[21] Bernard Chazelle,et al. The discrepancy method - randomness and complexity , 2000 .
[22] Bernard Chazelle,et al. How hard is half-space range searching? , 1993, Discret. Comput. Geom..
[23] J. Komlos,et al. Almost tight bounds for $\epsilon$-nets , 1992 .
[24] Micha Sharir,et al. Small-Size $\eps$-Nets for Axis-Parallel Rectangles and Boxes , 2010, SIAM J. Comput..
[25] David Haussler,et al. ɛ-nets and simplex range queries , 1987, Discret. Comput. Geom..
[26] Kenneth L. Clarkson,et al. On the set multi-cover problem in geometric settings , 2009, SCG '09.