$$\varepsilon $$ε-Mnets: Hitting Geometric Set Systems with Subsets

The existence of Macbeath regions is a classical theorem in convex geometry  (Macbeath in Ann Math 56:269–293, 1952), with recent applications in discrete and computational geometry. In this paper, we initiate the study of Macbeath regions in a combinatorial setting and establish near-optimal bounds for several basic geometric set systems.

[1]  A. M. Macbeath,et al.  A THEOREM ON NON-HOMOGENEOUS LATTICES' , 1952 .

[2]  Jirí Matousek,et al.  Efficient partition trees , 1991, SCG '91.

[3]  Jiri Matousek,et al.  Lectures on discrete geometry , 2002, Graduate texts in mathematics.

[4]  David Haussler,et al.  Epsilon-nets and simplex range queries , 1986, SCG '86.

[5]  Jirí Matousek,et al.  Reporting Points in Halfspaces , 1992, Comput. Geom..

[6]  C. A. Rogers,et al.  The directions of the line segments and of the r -dimensional balls on the boundary of a convex body in Euclidean space , 1970 .

[7]  J. Matousek,et al.  Geometric Discrepancy: An Illustrated Guide , 2009 .

[8]  Guilherme Dias da Fonseca,et al.  Optimal area-sensitive bounds for polytope approximation , 2012, SoCG '12.

[9]  BORIS ARONOV,et al.  Small-size ε-nets for axis-parallel rectangles and boxes , 2009, STOC '09.

[10]  Nabil H. Mustafa A Simple Proof of the Shallow Packing Lemma , 2016, Discrete & Computational Geometry.

[11]  J. Pach,et al.  Combinatorial geometry , 1995, Wiley-Interscience series in discrete mathematics and optimization.

[12]  Jeong Hyun Kang,et al.  Combinatorial Geometry , 2006 .

[13]  Saurabh Ray,et al.  New existence proofs ε-nets , 2008, SCG '08.

[14]  M. Sharir,et al.  State of the Union ( of Geometric Objects ) : A Review ∗ , 2007 .

[15]  János Komlós,et al.  Almost tight bounds forɛ-Nets , 1992, Discret. Comput. Geom..

[16]  Nabil H. Mustafa,et al.  Near-Optimal Generalisations of a Theorem of Macbeath , 2014, STACS.

[17]  János Pach,et al.  Tight lower bounds for the size of epsilon-nets , 2010, SoCG '11.

[18]  I Barany,et al.  Random polytopes, convex bodies, and approximation , 2007 .

[19]  Nabil H. Mustafa,et al.  New Lower Bounds for epsilon-Nets , 2016, SoCG.

[20]  Imre Bárány,et al.  CONVEX-BODIES, ECONOMIC CAP COVERINGS, RANDOM POLYTOPES , 1988 .

[21]  Bernard Chazelle,et al.  The discrepancy method - randomness and complexity , 2000 .

[22]  Bernard Chazelle,et al.  How hard is half-space range searching? , 1993, Discret. Comput. Geom..

[23]  J. Komlos,et al.  Almost tight bounds for $\epsilon$-nets , 1992 .

[24]  Micha Sharir,et al.  Small-Size $\eps$-Nets for Axis-Parallel Rectangles and Boxes , 2010, SIAM J. Comput..

[25]  David Haussler,et al.  ɛ-nets and simplex range queries , 1987, Discret. Comput. Geom..

[26]  Kenneth L. Clarkson,et al.  On the set multi-cover problem in geometric settings , 2009, SCG '09.