Microphysical aerosol parameters from multiwavelength lidar.
暂无分享,去创建一个
[1] G. Mie. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .
[2] W. F. Foshag. New Mineral Names , 1930 .
[3] Shih-Hsun Chang. A Generalization of a Theorem of Hille and Tamarkin with Applications , 1952 .
[4] E. Shettle,et al. Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties , 1979 .
[5] F. Hoog. Review of Fredholm Equations of the First Kind , 1980 .
[6] Z. Kam,et al. Absorption and Scattering of Light by Small Particles , 1998 .
[7] V. Faber,et al. Singular values and condition numbers of galerkin matrices arising from linear integral equations of the first kind , 1985 .
[8] R. Kress. Linear Integral Equations , 1989 .
[9] A. Louis. Inverse und schlecht gestellte Probleme , 1989 .
[10] P. Hansen. Numerical tools for analysis and solution of Fredholm integral equations of the first kind , 1992 .
[11] H. Engl,et al. Regularization of Inverse Problems , 1996 .
[12] Per Christian Hansen,et al. Rank-Deficient and Discrete Ill-Posed Problems , 1996 .
[13] J. Feichter,et al. Effect of black carbon and sulfate aerosols on the Global Radiation Budget , 1997 .
[14] J. Seinfeld,et al. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change , 1997 .
[15] P. Koepke,et al. Optical Properties of Aerosols and Clouds: The Software Package OPAC , 1998 .
[16] A. Ansmann,et al. Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: simulation. , 1999, Applied optics.
[17] A. Ansmann,et al. Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory. , 1999, Applied optics.
[18] W. Steen. Absorption and Scattering of Light by Small Particles , 1999 .
[19] P. Formenti,et al. Clear-sky closure studies of lower tropospheric aerosol and water vapor during ACE-2 using airborne sunphotometer, airborne in-situ, space-borne, and ground-based measurements , 2000 .
[20] Albert Ansmann,et al. Scanning 6-Wavelength 11-Channel Aerosol Lidar , 2000 .
[21] C. Böckmann. Hybrid regularization method for the ill-posed inversion of multiwavelength lidar data in the retrieval of aerosol size distributions. , 2001, Applied optics.
[22] U. Lohmann,et al. A study of internal and external mixing scenarios and its effect on aerosol optical properties and direct radiative forcing , 2002 .
[23] A. Ansmann,et al. Dual‐wavelength Raman lidar observations of the extinction‐to‐backscatter ratio of Saharan dust , 2002 .
[24] U. Wandinger,et al. Inversion with regularization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding. , 2002, Applied optics.
[25] M. Wendisch,et al. Arctic haze over Central Europe , 2003 .
[26] Nicolas Philippe Bukowiecki,et al. Mobile pollutant measurement laboratories - Spatial distribution and seasonal variation of aerosol parameters in the Zürich (Switzerland) and Minneapolis (USA) area , 2003 .
[27] A. Ansmann,et al. Aerosol lidar intercomparison in the framework of the EARLINET project. 2. Aerosol backscatter algorithms. , 2004, Applied optics.
[28] V. Freudenthaler,et al. Aerosol lidar intercomparison in the framework of the EARLINET project. 1. Instruments. , 2004 .
[29] A. Ansmann,et al. Closure study on optical and microphysical properties of a mixed urban and Arctic haze air mass observed with Raman lidar and Sun photometer , 2004 .
[30] Per Christian Hansen,et al. Computation of the singular value expansion , 1988, Computing.