A general approach to the design of allosteric, transcription factor-regulated DNAzymes

Here we explore a general strategy for the rational design of nucleic acid catalysts that can be allosterically activated by specific nucleic-acid binding proteins.

[1]  Markus Wieland,et al.  Improved aptazyme design and in vivo screening enable riboswitching in bacteria. , 2008, Angewandte Chemie.

[2]  G. F. Joyce,et al.  An isothermal system that couples ligand-dependent catalysis to ligand-independent exponential amplification. , 2011, Journal of the American Chemical Society.

[3]  Benedikt Klauser,et al.  Ribozyme-based aminoglycoside switches of gene expression engineered by genetic selection in S. cerevisiae. , 2015, ACS synthetic biology.

[4]  M. Gerstein,et al.  Structure and evolution of transcriptional regulatory networks. , 2004, Current opinion in structural biology.

[5]  S. Puig,et al.  A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma , 2011, Nature.

[6]  M. Illangasekare,et al.  Aminoacyl-RNA synthesis catalyzed by an RNA , 1995, Science.

[7]  Martin Fussenegger,et al.  A general design strategy for protein-responsive riboswitches in mammalian cells , 2014, Nature Methods.

[8]  Y. Xiong,et al.  Effects of DNAzymes targeting Aurora kinase A on the growth of human prostate cancer , 2008, Cancer Gene Therapy.

[9]  Itamar Willner,et al.  DNAzymes for sensing, nanobiotechnology and logic gate applications. , 2008, Chemical Society reviews.

[10]  R R Breaker,et al.  A DNA enzyme that cleaves RNA. , 1994, Chemistry & biology.

[11]  Raphael D. Levine,et al.  DNAzyme-based 2:1 and 4:1 multiplexers and 1:2 demultiplexer , 2014 .

[12]  M Yarus,et al.  A tiny RNA that catalyzes both aminoacyl-RNA and peptidyl-RNA synthesis. , 1999, RNA.

[13]  Bettina Appel,et al.  Generation and selection of ribozyme variants with potential application in protein engineering and synthetic biology , 2014, Applied Microbiology and Biotechnology.

[14]  Michael Famulok,et al.  Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy. , 2007, Chemical reviews.

[15]  C. Goding Fishful thinking: the rise and fall of MITF in melanoma , 2014, Pigment cell & melanoma research.

[16]  Itamar Willner,et al.  Detection of metal ions (Cu2+, Hg2+) and cocaine by using ligation DNAzyme machinery. , 2012, Chemistry.

[17]  I. Willner,et al.  Ion-responsive hemin-G-quadruplexes for switchable DNAzyme and enzyme functions. , 2014, Chemistry.

[18]  D. Sen,et al.  A general strategy for effector-mediated control of RNA-cleaving ribozymes and DNA enzymes. , 2002, Journal of molecular biology.

[19]  R R Breaker,et al.  Structural diversity of self-cleaving ribozymes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[20]  P. Witting,et al.  The peroxidase activity of a hemin--DNA oligonucleotide complex: free radical damage to specific guanine bases of the DNA. , 2001, Journal of the American Chemical Society.

[21]  Raphael D. Levine,et al.  A full-adder based on reconfigurable DNA-hairpin inputs and DNAzyme computing modules , 2014 .

[22]  R. Breaker,et al.  Deoxyribozymes: new activities and new applications , 2002, Cellular and Molecular Life Sciences CMLS.

[23]  Michael Famulok,et al.  Aptamers for allosteric regulation. , 2011, Nature chemical biology.

[24]  Amy C Yan,et al.  Protein-dependent ribozymes report molecular interactions in real time , 2002, Nature Biotechnology.

[25]  Yi Lu,et al.  A catalytic beacon sensor for uranium with parts-per-trillion sensitivity and millionfold selectivity , 2007, Proceedings of the National Academy of Sciences.

[26]  I. Willner,et al.  Chemiluminescence and chemiluminescence resonance energy transfer (CRET) aptamer sensors using catalytic hemin/G-quadruplexes. , 2011, ACS nano.

[27]  G. F. Joyce,et al.  Inventing and improving ribozyme function: rational design versus iterative selection methods. , 1994, Trends in biotechnology.

[28]  Itamar Willner,et al.  Aptamer-DNAzyme hairpins for amplified biosensing. , 2009, Analytical chemistry.

[29]  Yi Xiao,et al.  Amplified chemiluminescence surface detection of DNA and telomerase activity using catalytic nucleic acid labels. , 2004, Analytical chemistry.

[30]  J. Collins,et al.  Toehold Switches: De-Novo-Designed Regulators of Gene Expression , 2014, Cell.

[31]  Ahmad S. Khalil,et al.  Synthetic biology: applications come of age , 2010, Nature Reviews Genetics.

[32]  Andrew J. Bonham,et al.  Transcription factor beacons for the quantitative detection of DNA binding activity. , 2011, Journal of the American Chemical Society.

[33]  Max F. Perutz,et al.  Mechanisms of Cooperativity and Allosteric Regulation in Proteins , 1990 .

[34]  Kevin W Plaxco,et al.  Thermodynamic basis for the optimization of binding-induced biomolecular switches and structure-switching biosensors , 2009, Proceedings of the National Academy of Sciences.

[35]  Ahmad S. Khalil,et al.  A Synthetic Biology Framework for Programming Eukaryotic Transcription Functions , 2012, Cell.

[36]  R R Breaker,et al.  Rational design of allosteric ribozymes. , 1997, Chemistry & biology.

[37]  R R Breaker,et al.  Allosteric nucleic acid catalysts. , 2000, Current opinion in structural biology.

[38]  E. Wang,et al.  G-quadruplex-based DNAzyme for facile colorimetric detection of thrombin. , 2008, Chemical communications.

[39]  N. Hernandez,et al.  TBP, a universal eukaryotic transcription factor? , 1993, Genes & development.

[40]  D. Sen,et al.  A novel mode of regulation of an RNA-cleaving DNAzyme by effectors that bind to both enzyme and substrate. , 2001, Journal of molecular biology.

[41]  J. Borovanský,et al.  “Transcription physiology” of pigment formation in melanocytes: central role of MITF , 2010, Experimental dermatology.

[42]  L. A. Stargell,et al.  The Stability of the TFIIA-TBP-DNA Complex Is Dependent on the Sequence of the TATAAA Element* , 2001, The Journal of Biological Chemistry.

[43]  M. Famulok,et al.  A novel ribozyme with ester transferase activity. , 1998, Chemistry & biology.

[44]  Itamar Willner,et al.  Catalytic beacons for the detection of DNA and telomerase activity. , 2004, Journal of the American Chemical Society.

[45]  A. Feldman,et al.  A general approach for the use of oligonucleotide effectors to regulate the catalysis of RNA-cleaving ribozymes and DNAzymes. , 2002, Nucleic acids research.

[46]  I. Willner,et al.  Logic gates and antisense DNA devices operating on a translator nucleic Acid scaffold. , 2009, ACS nano.

[47]  Asad U. Khan,et al.  Ribozyme: a clinical tool. , 2006, Clinica chimica acta; international journal of clinical chemistry.

[48]  Christof von Kalle,et al.  Artificial riboswitches for gene expression and replication control of DNA and RNA viruses , 2014, Proceedings of the National Academy of Sciences.

[49]  Peter F M Choong,et al.  DNAzyme technology and cancer therapy: cleave and let die , 2008, Molecular Cancer Therapeutics.

[50]  Michael Zuker,et al.  Mfold web server for nucleic acid folding and hybridization prediction , 2003, Nucleic Acids Res..

[51]  Yi Lu,et al.  A DNAzyme catalytic beacon sensor for paramagnetic Cu2+ ions in aqueous solution with high sensitivity and selectivity. , 2007, Journal of the American Chemical Society.

[52]  Yingfu Li,et al.  Simple Fluorescent Sensors Engineered with Catalytic DNA ‘MgZ’ Based on a Non-Classic Allosteric Design , 2007, PloS one.

[53]  R. Breaker Engineered allosteric ribozymes as biosensor components. , 2002, Current opinion in biotechnology.

[54]  M. Levy,et al.  ATP-dependent allosteric DNA enzymes. , 2002, Chemistry & biology.

[55]  Yingfu Li,et al.  DNA-enhanced peroxidase activity of a DNA-aptamer-hemin complex. , 1998, Chemistry & biology.

[56]  T. Haran,et al.  Signals for TBP/TATA box recognition. , 2000, Journal of molecular biology.

[57]  G. F. Joyce,et al.  Self-Sustained Replication of an RNA Enzyme , 2009, Science.

[58]  Andrew D. Ellington,et al.  Beyond allostery: Catalytic regulation of a deoxyribozyme through an entropy-driven DNA amplifier , 2010 .

[59]  W. Scott,et al.  The hammerhead, hairpin and VS ribozymes are catalytically proficient in monovalent cations alone. , 1998, Chemistry & biology.

[60]  C. Goding,et al.  Targeting the Microphthalmia Basic Helix-Loop-Helix–Leucine Zipper Transcription Factor to a Subset of E-Box Elements In Vitro and In Vivo , 1998, Molecular and Cellular Biology.

[61]  Gerald F. Joyce,et al.  Autocatalytic aptazymes enable ligand-dependent exponential amplification of RNA , 2009, Nature Biotechnology.

[62]  G. F. Joyce,et al.  The effect of cytidine on the structure and function of an RNA ligase ribozyme. , 2001, RNA.