LTP and LTD vary with layer in rodent visual cortex

[1]  N. Daw,et al.  Requirement for the RIIβ Isoform of PKA, But Not Calcium-Stimulated Adenylyl Cyclase, in Visual Cortical Plasticity , 2004, The Journal of Neuroscience.

[2]  N. Daw,et al.  Reduced ocular dominance plasticity and long‐term potentiation in the developing visual cortex of protein kinase A RIIα mutant mice , 2004, The European journal of neuroscience.

[3]  N. Daw,et al.  Layer variations of long-term depression in rat visual cortex. , 2004, Journal of neurophysiology.

[4]  X. F. Wang,et al.  Long term potentiation varies with layer in rat visual cortex , 2003, Brain Research.

[5]  M. Bear,et al.  Molecular mechanism for loss of visual cortical responsiveness following brief monocular deprivation , 2003, Nature Neuroscience.

[6]  N. Daw,et al.  Roles of protein kinase A and protein kinase G in synaptic plasticity in the visual cortex. , 2003, Cerebral cortex.

[7]  Y. Yoshimura,et al.  Two Forms of Synaptic Plasticity with Distinct Dependence on Age, Experience, and NMDA Receptor Subtype in Rat Visual Cortex , 2003, The Journal of Neuroscience.

[8]  D. Manahan‐Vaughan,et al.  An increased expression of the mGlu5 receptor protein following LTP induction at the perforant path–dentate gyrus synapse in freely moving rats , 2003, Neuropharmacology.

[9]  A. Kirkwood,et al.  Absence of Long-Term Depression in the Visual Cortex of Glutamic Acid Decarboxylase-65 Knock-Out Mice , 2002, The Journal of Neuroscience.

[10]  T. Hensch,et al.  Experience-dependent plasticity without long-term depression by type 2 metabotropic glutamate receptors in developing visual cortex , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[11]  N. Daw,et al.  Effect of the group I metabotropic glutamate agonist DHPG on the visual cortex. , 2001, Journal of neurophysiology.

[12]  N. Daw,et al.  Cyclic AMP-dependent protein kinase mediates ocular dominance shifts in cat visual cortex , 2001, Nature Neuroscience.

[13]  J. Trachtenberg,et al.  Rapid extragranular plasticity in the absence of thalamocortical plasticity in the developing primary visual cortex. , 2000, Science.

[14]  N. Daw,et al.  Development and function of metabotropic glutamate receptors in cat visual cortex. , 1999, Journal of neurobiology.

[15]  N. Daw,et al.  Effect of the group II metabotropic glutamate agonist, 2R,4R-APDC, varies with age, layer, and visual experience in the visual cortex. , 1999, Journal of neurophysiology.

[16]  N. Daw,et al.  The effect of ACPD on the responses to NMDA and AMPA varies with layer in slices of rat visual cortex , 1998, Brain Research.

[17]  M. Stryker,et al.  Local GABA circuit control of experience-dependent plasticity in developing visual cortex. , 1998, Science.

[18]  M. Stryker,et al.  Comparison of Plasticity In Vivo and In Vitro in the Developing Visual Cortex of Normal and Protein Kinase A RIβ-Deficient Mice , 1998, The Journal of Neuroscience.

[19]  Charles F Stevens,et al.  Synaptic plasticity , 1998, Current Biology.

[20]  T. Tsumoto,et al.  Brain-Derived Neurotrophic Factor Enhances Long-Term Potentiation in Rat Visual Cortex , 1997, The Journal of Neuroscience.

[21]  J. Roder,et al.  Mice Lacking Metabotropic Glutamate Receptor 5 Show Impaired Learning and Reduced CA1 Long-Term Potentiation (LTP) But Normal CA3 LTP , 1997, The Journal of Neuroscience.

[22]  N. Daw,et al.  Activation of metabotropic glutamate receptors has different effects in different layers of cat visual cortex , 1997, Visual Neuroscience.

[23]  T. Tsumoto,et al.  Brain-derived neurotrophic factor blocks long-term depression in rat visual cortex. , 1996, Journal of neurophysiology.

[24]  S. Dudek,et al.  Developmental Down-Regulation of LTD in Cortical Layer IV and Its Independence of Modulation by Inhibition , 1996, Neuron.

[25]  M P Stryker,et al.  Plasticity of geniculocortical afferents following brief or prolonged monocular occlusion in the cat , 1996, The Journal of comparative neurology.

[26]  K. Fox,et al.  Injection of MK-801 affects ocular dominance shifts more than visual activity. , 1996, Journal of neurophysiology.

[27]  Mark F. Bear,et al.  Co-regulation of long-term potentiation and experience-dependent synaptic plasticity in visual cortex by age and experience , 1995, Nature.

[28]  G. Collingridge,et al.  Motor deficit and impairment of synaptic plasticity in mice lacking mGluR1 , 1994, Nature.

[29]  M. Bear,et al.  Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[30]  W Singer,et al.  Disruption of experience-dependent synaptic modifications in striate cortex by infusion of an NMDA receptor antagonist , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[31]  N. Daw,et al.  The location and function of NMDA receptors in cat and kitten visual cortex , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  W. Singer,et al.  Long-term potentiation and NMDA receptors in rat visual cortex , 1987, Nature.

[33]  J. Lund,et al.  Interlaminar connections and pyramidal neuron organisation in the visual cortex, area 17, of the Macaque monkey , 1975 .

[34]  S. Kitano,et al.  Increased expression , 2022 .

[35]  N. Daw,et al.  Critical period for monocular deprivation in the cat visual cortex. , 1992, Journal of neurophysiology.

[36]  G. Recanzone Experience-dependent plasticity , 2022 .