Comparison of independent, stratified and random covering sample schemes in optimization problems

We consider two schemes of global optimization algorithms based on the use of grids. Our main goal is to compare the so-called independent sampling (IS), stratified sampling (SS) and random covering (RC) grids implemented to the estimation problem of the global maximum of a function. The results give an insight on how a decrease of randomness in selection rules for the trial points improves efficiency of global random search algorithms.

[1]  V. V. Nekrutkin,et al.  Random processes for classical equations of mathematical physics , 1991, Acta Applicandae Mathematicae.

[2]  P. Cooke,et al.  Statistical inference for bounds of random variables , 1979 .

[3]  J. Hammersley,et al.  Monte Carlo Methods , 1965 .

[4]  C. A. Rogers,et al.  Packing and Covering , 1964 .

[5]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[6]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[7]  K. Fang,et al.  Number-theoretic methods in statistics , 1993 .

[8]  A. A. Zhigli︠a︡vskiĭ,et al.  Theory of Global Random Search , 1991 .

[9]  E. J. Gumbel,et al.  Statistics of Extremes. , 1960 .

[10]  Peter Hall,et al.  On Estimating the Endpoint of a Distribution , 1982 .

[11]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[12]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[13]  H. Friedrich,et al.  Ermakow, S. M., Die Monte-Carlo-Methode und verwandte Fragen. 291 S., Berlin 1975. VEB Deutscher Verlag der Wissenschaften. M 62,- , 1976 .

[14]  P. Erdös,et al.  Covering space with convex bodies , 1962 .