A facile pot synthesis of (Ti3AlC2) MAX phase and its derived MXene (Ti3C2Tx)

[1]  B. Barbeau,et al.  Application of MXenes for water treatment and energy-efficient desalination: A review. , 2021, Journal of hazardous materials.

[2]  K. S. Tee,et al.  MXene in the lens of biomedical engineering: synthesis, applications and future outlook , 2021, Biomedical engineering online.

[3]  U. Sundararaj,et al.  Improved synthesis of Ti3C2Tx MXenes resulting in exceptional electrical conductivity, high synthesis yield, and enhanced capacitance. , 2021, Nanoscale.

[4]  D. Golberg,et al.  The effect of Ti3AlC2 MAX phase synthetic history on the structure and electrochemical properties of resultant Ti3C2 MXenes , 2020 .

[5]  L. Näslund,et al.  X-ray Photoelectron Spectroscopy of Ti3AlC2, Ti3C2Tz, and TiC Provides Evidence for the Electrostatic Interaction between Laminated Layers in MAX-Phase Materials , 2020, The Journal of Physical Chemistry C.

[6]  F. Calle‐Vallejo,et al.  MXenes: New Horizons in Catalysis , 2020 .

[7]  Yajun Wang,et al.  Polylysine-modified MXene nanosheets with highly loaded glucose oxidase as cascade nanoreactor for glucose decomposition and electrochemical sensing. , 2020, Journal of colloid and interface science.

[8]  Yuliang Zhang,et al.  Synthesis of Porous N-Rich Carbon/MXene from MXene@Polypyrrole Hybrid Nanosheets as Oxygen Reduction Reaction Electrocatalysts , 2020 .

[9]  Yi Zhang,et al.  Facile synthesis of sulfur@titanium carbide Mxene as high performance cathode for lithium-sulfur batteries , 2020, Nanophotonics.

[10]  S. Ogale,et al.  Growth, Properties, and Applications of Pulsed Laser Deposited Nanolaminate Ti3AlC2 Thin Films , 2020, 2007.04798.

[11]  Chun‐Sing Lee,et al.  Two-dimensional MXene-based materials for photothermal therapy , 2020 .

[12]  Y. Gogotsi,et al.  Raman Spectroscopy Analysis of the Structure and Surface Chemistry of Ti3C2Tx MXene , 2020 .

[13]  A. Małolepszy,et al.  Study of optical properties of graphene flakes and its derivatives in aqueous solutions. , 2020, Optics express.

[14]  X. Sheng,et al.  MXene aerogel-based phase change materials toward solar energy conversion , 2020 .

[15]  A. Jiménez-Morales,et al.  Study of the synthesis of MAX phase Ti3SiC2 powders by pressureless sintering , 2020 .

[16]  Meiling Liu,et al.  Selective detection of Fe3+ ions based on fluorescence MXene quantum dots via a mechanism integrating electron transfer and inner filter effect. , 2020, Nanoscale.

[17]  D. Rossi,et al.  Titanium-carbide MXenes for work function and interface engineering in perovskite solar cells , 2019, Nature Materials.

[18]  D. Tang,et al.  Ti3C2 MXene quantum dot-encapsulated liposomes for photothermal immunoassays using a portable near-infrared imaging camera on a smartphone. , 2019, Nanoscale.

[19]  Y. Gogotsi,et al.  Effect of Ti3AlC2 MAX Phase on Structure and Properties of Resultant Ti3C2Tx MXene , 2019, ACS Applied Nano Materials.

[20]  Y. Gogotsi,et al.  MXene/Polymer Hybrid Materials for Flexible AC-Filtering Electrochemical Capacitors , 2019, Joule.

[21]  Y. Yoon,et al.  Low temperature solution synthesis of reduced two dimensional Ti3C2 MXenes with paramagnetic behaviour. , 2018, Nanoscale.

[22]  S. Yao,et al.  Fluorescent Ti3C2 MXene quantum dots for an alkaline phosphatase assay and embryonic stem cell identification based on the inner filter effect. , 2018, Nanoscale.

[23]  Qiu Jiang,et al.  Inherent electrochemistry and charge transfer properties of few-layered two-dimensional Ti3C2Tx MXene. , 2018, Nanoscale.

[24]  Xiaodong He,et al.  Effect of Ti3AlC2 precursor on the electrochemical properties of the resulting MXene Ti3C2 for Li-ion batteries , 2018 .

[25]  Quan Xu,et al.  High photoluminescence quantum yield of 18.7% by using nitrogen-doped Ti3C2 MXene quantum dots , 2018 .

[26]  Yury Gogotsi,et al.  Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers , 2018, Science Advances.

[27]  Dhanjai,et al.  2D transition metal carbide MXene as a robust biosensing platform for enzyme immobilization and ultrasensitive detection of phenol. , 2018, Biosensors & bioelectronics.

[28]  Shi-gang Lu,et al.  Recent Advances in Layered Ti3 C2 Tx MXene for Electrochemical Energy Storage. , 2018, Small.

[29]  Jihan Kim,et al.  Metallic Ti3C2Tx MXene Gas Sensors with Ultrahigh Signal-to-Noise Ratio. , 2018, ACS nano.

[30]  R. Pérez‐Hernández,et al.  Photocatalytic activity of Ag/Al2O3–Gd2O3 photocatalysts prepared by the sol–gel method in the degradation of 4-chlorophenol , 2018, RSC advances.

[31]  Y. Gogotsi,et al.  Development of asymmetric supercapacitors with titanium carbide-reduced graphene oxide couples as electrodes , 2018 .

[32]  S. Joo,et al.  MXene: an emerging two-dimensional material for future energy conversion and storage applications , 2017 .

[33]  Hao‐Bin Zhang,et al.  Hydrophobic, Flexible, and Lightweight MXene Foams for High‐Performance Electromagnetic‐Interference Shielding , 2017, Advanced materials.

[34]  Yury Gogotsi,et al.  Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene) , 2017 .

[35]  N. Klyui,et al.  Binder-free Ti3C2Tx MXene electrode film for supercapacitor produced by electrophoretic deposition method , 2017 .

[36]  Minshen Zhu,et al.  Photoluminescent Ti3C2 MXene Quantum Dots for Multicolor Cellular Imaging , 2017, Advanced materials.

[37]  Yury Gogotsi,et al.  2D metal carbides and nitrides (MXenes) for energy storage , 2017 .

[38]  Yu Chen,et al.  Two-Dimensional Ultrathin MXene Ceramic Nanosheets for Photothermal Conversion. , 2017, Nano letters.

[39]  H. Alshareef,et al.  Novel amperometric glucose biosensor based on MXene nanocomposite KAUST Repository , 2017 .

[40]  Y. Gogotsi,et al.  H2O2 assisted room temperature oxidation of Ti2C MXene for Li-ion battery anodes. , 2016, Nanoscale.

[41]  A. Du,et al.  Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production , 2017, Nature Communications.

[42]  M. Radovic,et al.  Template-free 3D titanium carbide (Ti3C2Tx) MXene particles crumpled by capillary forces. , 2016, Chemical communications.

[43]  Yi Tang,et al.  TiO2 nanoparticle modified organ-like Ti3C2 MXene nanocomposite encapsulating hemoglobin for a mediator-free biosensor with excellent performances. , 2015, Biosensors & bioelectronics.

[44]  Chenhui Yang,et al.  A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2 , 2015 .

[45]  I. Petrov,et al.  X-ray Photoelectron Spectroscopy Analyses of the Electronic Structure of Polycrystalline Ti1-xAlxN Thin Films with 0 ≤ x ≤ 0.96 , 2014 .

[46]  P. Shen,et al.  TiCx–Ti2C nanocrystals and epitaxial graphene-based lamellae by pulsed laser ablation of bulk TiC in vacuum , 2014 .

[47]  Kevin M. Cook,et al.  Transparent Conductive Two-Dimensional Titanium Carbide Epitaxial Thin Films , 2014, Chemistry of materials : a publication of the American Chemical Society.

[48]  Yury Gogotsi,et al.  Intercalation and delamination of layered carbides and carbonitrides , 2013, Nature Communications.

[49]  Yury Gogotsi,et al.  Two-dimensional transition metal carbides. , 2012, ACS nano.

[50]  V. Presser,et al.  Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2 , 2011, Advanced materials.

[51]  Yanchun Zhou,et al.  Pressureless Sintering and Properties of Ti3AlC2 , 2010 .

[52]  E. Kisi,et al.  The Design of Crystalline Precursors For the Synthesis of Mn−1AXn Phases and Their Application to Ti3AlC2 , 2007 .

[53]  F. Langlais,et al.  Solid-state synthesis and characterization of the ternary phase Ti3SiC2 , 1994, Journal of Materials Science.

[54]  J. Lis,et al.  Solid combustion synthesis of Ti3SiC2 , 1989 .

[55]  T. Hirai,et al.  Chemically vapor deposited Ti3SiC2 , 1987 .