Weighted Unsupervised Learning for 3D Object Detection

This paper introduces a novel weighted unsuper-vised learning for object detection using an RGB-D camera. This technique is feasible for detecting the moving objects in the noisy environments that are captured by an RGB-D camera. The main contribution of this paper is a real-time algorithm for detecting each object using weighted clustering as a separate cluster. In a preprocessing step, the algorithm calculates the pose 3D position X, Y, Z and RGB color of each data point and then it calculates each data point’s normal vector using the point’s neighbor. After preprocessing, our algorithm calculates k-weights for each data point; each weight indicates membership. Resulting in clustered objects of the scene.

[1]  Tomaso A. Poggio,et al.  A Trainable System for Object Detection , 2000, International Journal of Computer Vision.

[2]  Simon Berkovich Intelligent Software Defined Storage , 2014, 2014 Fifth International Conference on Computing for Geospatial Research and Application.

[3]  Dieter Fox,et al.  RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor environments , 2012, Int. J. Robotics Res..

[4]  Helmut Neuschmied,et al.  Evaluating Pointing Accuracy on Kinect V 2 Sensor , 2014 .

[5]  Simon Berkovich,et al.  Golay Code Transformations for Ensemble Clustering in Application to Medical Diagnostics , 2015 .

[6]  Cordelia Schmid,et al.  Spatio-temporal Object Detection Proposals , 2014, ECCV.

[7]  Pietro Perona,et al.  Object class recognition by unsupervised scale-invariant learning , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[8]  Thierry Bouwmans,et al.  Fuzzy integral for moving object detection , 2008, 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence).

[9]  Daniel P. Huttenlocher,et al.  Weakly Supervised Learning of Part-Based Spatial Models for Visual Object Recognition , 2006, ECCV.

[10]  Simon Berkovich,et al.  An Efficient Technique for Searching Very Large Files with Fuzzy Criteria Using the Pigeonhole Principle , 2014, 2014 Fifth International Conference on Computing for Geospatial Research and Application.

[11]  Thomas M. Thompson From error-correcting codes through sphere packings to simple groups , 1983 .

[12]  Pairote Sattayatham,et al.  Weighted K-Means for Density-Biased Clustering , 2005, DaWaK.

[13]  Mario Ignacio Chacon Murguia,et al.  An Adaptive Neural-Fuzzy Approach for Object Detection in Dynamic Backgrounds for Surveillance Systems , 2012, IEEE Transactions on Industrial Electronics.

[14]  Raja Mazumder,et al.  Extraction of Molecular Features through Exome to Transcriptome Alignment. , 2013, Journal of metabolomics and systems biology.

[15]  Lalit R. Bahl,et al.  On Gilbert burst-error-correcting codes (Corresp.) , 1969, IEEE Trans. Inf. Theory.

[16]  Lucia Maddalena,et al.  A fuzzy spatial coherence-based approach to background/foreground separation for moving object detection , 2010, Neural Computing and Applications.

[17]  Vinod Nair,et al.  An unsupervised, online learning framework for moving object detection , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[18]  Mercedeh Movassagh,et al.  SNPlice: variants that modulate Intron retention from RNA-sequencing data , 2015, Bioinform..

[19]  Tomás Pajdla,et al.  3D with Kinect , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[20]  Dieter Fox,et al.  Object recognition with hierarchical kernel descriptors , 2011, CVPR 2011.

[21]  Liehuang Zhu,et al.  Fuzzy keyword search on encrypted cloud storage data with small index , 2011, 2011 IEEE International Conference on Cloud Computing and Intelligence Systems.

[22]  Dieter Fox,et al.  Unsupervised Feature Learning for RGB-D Based Object Recognition , 2012, ISER.

[23]  Svetlana Lazebnik,et al.  Scene recognition and weakly supervised object localization with deformable part-based models , 2011, 2011 International Conference on Computer Vision.

[24]  S. Tulaczyk,et al.  Kinects as sensors in earth science; glaciological, geomorphological, and hydrological applications , 2011 .

[25]  Etienne Kerre,et al.  Fuzzy techniques in image processing , 2000 .

[26]  Duoduo Liao,et al.  On clusterization of "big data" streams , 2012, COM.Geo '12.

[27]  Lien Fu Lai,et al.  Developing a fuzzy search engine based on fuzzy ontology and semantic search , 2011, 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011).

[28]  Robinson E. Pino,et al.  Network Science and Cybersecurity , 2013, Advances in Information Security.

[29]  D. Candidate MAE Geometric Adaptive Tracking Control of a Quadrotor UAV on SE ( 3 ) for Agile Maneuvers , 2014 .

[30]  Sergei Vassilvitskii,et al.  k-means++: the advantages of careful seeding , 2007, SODA '07.

[31]  Ferdinand Fuhrmann,et al.  EVALUATION OF THE SPATIAL RESOLUTION ACCURACY OF THE FACE TRACKING SYSTEM FOR KINECT FOR WINDOWS V 1 AND V 2 , 2014 .

[32]  Taeyoung Lee,et al.  Dynamics and control of quadrotor UAVs transporting a rigid body connected via flexible cables , 2015, 2015 American Control Conference (ACC).

[33]  D. Mery,et al.  Color measurement in L ¿ a ¿ b ¿ units from RGB digital images , 2006 .

[34]  S. Berkovich,et al.  Golay code clustering using double golay encoding technique , 2011 .

[35]  Kohei Arai,et al.  Comparative Study between the Proposed GA Based ISODAT Clustering and the Conventional Clustering Methods , 2012 .

[36]  Nebojsa Jojic,et al.  LOCUS: learning object classes with unsupervised segmentation , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[37]  Tao Jing,et al.  Golay Code Clustering for Mobility Behavior Similarity Classification in Pocket Switched Networks , 2011, WASA.

[38]  Ade Miller,et al.  C++ AMP: Accelerated Massive Parallelism with Microsoft Visual C++ , 2012 .

[39]  Daewon Lee,et al.  Geometric stabilization of a quadrotor UAV with a payload connected by flexible cable , 2013, 2014 American Control Conference.

[40]  Seiji Yamada,et al.  Careful Seeding Method based on Independent Components Analysis for k-means Clustering , 2012 .

[41]  Ali Ridho Barakbah,et al.  Hierarchical K-means: an algorithm for centroids initialization for K-means , 2007 .

[42]  Ling Shao,et al.  Enhanced Computer Vision With Microsoft Kinect Sensor: A Review , 2013, IEEE Transactions on Cybernetics.

[43]  Daewon Lee,et al.  Geometric nonlinear PID control of a quadrotor UAV on SE(3) , 2013, 2013 European Control Conference (ECC).

[44]  Simon Y. Berkovich,et al.  23-bit metaknowledge template towards Big Data knowledge discovery and management , 2014, 2014 International Conference on Data Science and Advanced Analytics (DSAA).

[45]  Joel West,et al.  Commercializing Open Science: Deep Space Communications as the Lead Market for Shannon Theory, 196073 , 2008 .

[46]  Thomas Butkiewicz Low-cost coastal mapping using Kinect v2 time-of-flight cameras , 2014, 2014 Oceans - St. John's.

[47]  Tsuhan Chen,et al.  Semantic-Shift for Unsupervised Object Detection , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[48]  Andrea Fossati,et al.  Consumer Depth Cameras for Computer Vision , 2013, Advances in Computer Vision and Pattern Recognition.

[49]  Simon Y. Berkovich,et al.  Novel Metaknowledge-Based Processing Technique for Multimediata Big Data Clustering Challenges , 2015, 2015 IEEE International Conference on Multimedia Big Data.

[50]  James K. Hahn,et al.  Non-rigid surface registration using cover tree based clustering and nearest neighbor search , 2014, 2014 International Conference on Computer Vision Theory and Applications (VISAPP).

[51]  Dieter Fox,et al.  A large-scale hierarchical multi-view RGB-D object dataset , 2011, 2011 IEEE International Conference on Robotics and Automation.

[52]  G. David Forney,et al.  Generalized minimum distance decoding , 1966, IEEE Trans. Inf. Theory.

[53]  Farhad A. Goodarzi Geometric Nonlinear Controls for Multiple Cooperative Quadrotor UAVs Transporting a Rigid Body , 2015, 1508.03789.

[54]  David A. McAllester,et al.  Object Detection with Discriminatively Trained Part Based Models , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[55]  Yali Amit,et al.  Object Detection , 2020, Computer Vision, A Reference Guide.

[56]  Maryam Yammahi,et al.  Construction of FuzzyFind Dictionary using Golay Coding Transformation for Searching Applications , 2015, International Journal of Advanced Computer Science and Applications.

[57]  Tieniu Tan,et al.  Semi-supervised Learning for RGB-D Object Recognition , 2014, 2014 22nd International Conference on Pattern Recognition.

[58]  Guoliang Li,et al.  Efficient interactive fuzzy keyword search , 2009, WWW '09.

[59]  Kamran Kowsari Comparison three methods of clustering: k-means, spectral clustering and hierarchical clustering , 2013, ArXiv.

[60]  James K. Hahn,et al.  Automatic, Real Time, Unsupervised Spatio-temporal 3D Object Detection Using RGB-D Cameras , 2015, 2015 19th International Conference on Information Visualisation.

[61]  R. Hunter Photoelectric Color Difference Meter , 1958 .

[62]  Trevor Darrell,et al.  Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation , 2013, 2014 IEEE Conference on Computer Vision and Pattern Recognition.