Meshless method with ridge basis functions

[1]  Limin Ma,et al.  Approximation to the k-th derivatives by multiquadric quasi-interpolation method , 2009, J. Comput. Appl. Math..

[2]  Dany Leviatan,et al.  Approximation by polynomials and ridge functions of classes of s-monotone radial functions , 2008, J. Approx. Theory.

[3]  Bangti Jin,et al.  The plane wave method for inverse problems associated with Helmholtz-type equations , 2008 .

[4]  YuanTong Gu,et al.  Coupling of the meshfree and finite element methods for determination of the crack tip fields , 2008 .

[5]  LI Cui-wei A novel meshless method based on ridge basis function , 2008 .

[6]  V. Ismailov Characterization of an extremal sum of ridge functions , 2007 .

[7]  Representation of multivariate functions by sums of ridge functions , 2007 .

[8]  R. Jorge,et al.  Modelling cross-ply laminated elastic shells by a higher-order theory and multiquadrics , 2006 .

[9]  S. A. Sarra,et al.  Integrated multiquadric radial basis function approximation methods , 2006, Comput. Math. Appl..

[10]  Zhang Li-wei Approximation to limited linear combined ridge basis function of plane wave , 2006 .

[11]  Xiong Zhang,et al.  Meshless Galerkin least-squares method , 2005 .

[12]  Yuan Xu,et al.  Constructive methods of approximation by ridge functions and radial functions , 1993, Numerical Algorithms.

[13]  Zhang Li-wei Error Estimates for Interpolation with Ridge Basis Function , 2005 .

[14]  Tobin A. Driscoll,et al.  Computing eigenmodes ofelliptic operators using radial basis functions , 2004 .

[15]  Y. Hon,et al.  Domain decomposition for radial basis meshless methods , 2004 .

[16]  A. Mantoglou Estimation of heterogeneous aquifer parameters from piezometric data using ridge functions and neural networks , 2003 .

[17]  Guirong Liu Mesh Free Methods: Moving Beyond the Finite Element Method , 2002 .

[18]  S. Atluri,et al.  The meshless local Petrov-Galerkin (MLPG) method , 2002 .

[19]  Guirong Liu,et al.  A point interpolation method for two-dimensional solids , 2001 .

[20]  Vitaly Maiorov,et al.  On the Best Approximation by Ridge Functions in the Uniform Norm , 2001 .

[21]  Martin D. Buhmann,et al.  A new class of radial basis functions with compact support , 2001, Math. Comput..

[22]  N. Aluru A point collocation method based on reproducing kernel approximations , 2000 .

[23]  Shmuel Rippa,et al.  An algorithm for selecting a good value for the parameter c in radial basis function interpolation , 1999, Adv. Comput. Math..

[24]  Gregory E. Fasshauer,et al.  Solving differential equations with radial basis functions: multilevel methods and smoothing , 1999, Adv. Comput. Math..

[25]  Holger Wendland,et al.  Meshless Galerkin methods using radial basis functions , 1999, Math. Comput..

[26]  Kwok Fai Cheung,et al.  Multiquadric Solution for Shallow Water Equations , 1999 .

[27]  Robert Schaback,et al.  Improved error bounds for scattered data interpolation by radial basis functions , 1999, Math. Comput..

[28]  T. Belytschko,et al.  THE NATURAL ELEMENT METHOD IN SOLID MECHANICS , 1998 .

[29]  Carsten Franke,et al.  Solving partial differential equations by collocation using radial basis functions , 1998, Appl. Math. Comput..

[30]  S. Atluri,et al.  A local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretization approach , 1998 .

[31]  A. Kroó On Approximation by Ridge Functions , 1997 .

[32]  K. Sakoda Numerical analysis of the interference patterns in the optical transmission spectra of a square photonic lattice , 1997 .

[33]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[34]  R. A. Uras,et al.  Generalized multiple scale reproducing kernel particle methods , 1996 .

[35]  Oden,et al.  An h-p adaptive method using clouds , 1996 .

[36]  T. Liszka,et al.  hp-Meshless cloud method , 1996 .

[37]  E. Oñate,et al.  A FINITE POINT METHOD IN COMPUTATIONAL MECHANICS. APPLICATIONS TO CONVECTIVE TRANSPORT AND FLUID FLOW , 1996 .

[38]  Holger Wendland,et al.  Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree , 1995, Adv. Comput. Math..

[39]  Bambi Hu,et al.  Is there relevance of chaos in numerical solutions of quantum billiards , 1995, chao-dyn/9804039.

[40]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[41]  B. Nayroles,et al.  Generalizing the finite element method: Diffuse approximation and diffuse elements , 1992 .

[42]  E. Kansa Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .

[43]  Eric J. Heller,et al.  Bound-State Eigenfunctions of Classically Chaotic Hamiltonian Systems: Scars of Periodic Orbits , 1984 .

[44]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[45]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[46]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[47]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .