Mixed Constraint Preconditioners for the iterative solution of FE coupled consolidation equations

The Finite Element (FE) integration of the coupled consolidation equations requires the solution of linear symmetric systems with an indefinite saddle point coefficient matrix. Because of ill-conditioning, the repeated solution in time of the FE equations may be a major computational issue requiring ad hoc preconditioning strategies to guarantee the efficient convergence of Krylov subspace methods. In the present paper a Mixed Constraint Preconditioner (MCP) is developed combining implicit and explicit approximations of the inverse of the structural sub-matrix, with the performance investigated in some representative examples. An upper bound of the eigenvalue distance from unity is theoretically provided in order to give practical indications on how to improve the preconditioner. The MCP is efficiently implemented into a Krylov subspace method with the performance obtained in 2D and 3D examples compared to that of Inexact Constraint Preconditioners and Least Square Logarithm scaled ILUT preconditioners. Two variants of MCP (T-MCP and D-MCP), developed with the aim at reducing the cost of the preconditioner application, are also tested. The results show that the MCP variants constitute a reliable and robust approach for the efficient solution of realistic coupled consolidation FE models, and especially so in severely ill-conditioned problems.

[1]  R. Freund,et al.  Software for simplified Lanczos and QMR algorithms , 1995 .

[2]  Giuseppe Gambolati,et al.  Numerical performance of projection methods in finite element consolidation models , 2001 .

[3]  Michele Benzi,et al.  Robust Approximate Inverse Preconditioning for the Conjugate Gradient Method , 2000, SIAM J. Sci. Comput..

[4]  Luca Bergamaschi,et al.  Novel preconditioners for the iterative solution to FE-discretized coupled consolidation equations , 2007 .

[5]  Ilaria Perugia,et al.  Block-diagonal and indefinite symmetric preconditioners for mixed finite element formulations , 2000, Numer. Linear Algebra Appl..

[6]  A. Wathen,et al.  Fast iterative solution of stabilised Stokes systems part II: using general block preconditioners , 1994 .

[7]  Yousef Saad,et al.  ILUT: A dual threshold incomplete LU factorization , 1994, Numer. Linear Algebra Appl..

[8]  Kok-Kwang Phoon,et al.  A modified Jacobi preconditioner for solving ill‐conditioned Biot's consolidation equations using symmetric quasi‐minimal residual method , 2001 .

[9]  G. Gambolati,et al.  Direct, partitioned and projected solution to finite element consolidation models , 2002 .

[10]  Giuseppe Gambolati,et al.  Scaling improves stability of preconditioned CG‐like solvers for FE consolidation equations , 2003 .

[11]  Andrew J. Wathen,et al.  Fast iterative solution of stabilised Stokes systems, part I: using simple diagonal preconditioners , 1993 .

[12]  Giuseppe Gambolati,et al.  Ill-conditioning of finite element poroelasticity equations , 2001 .

[13]  Ladislav Lukand Jan Vl Indefinitely Preconditioned Inexact Newton Method for Large Sparse Equality Constrained Non-linear Programming Problems , 1998 .

[14]  X. Chen,et al.  A modified SSOR preconditioner for sparse symmetric indefinite linear systems of equations , 2006 .

[15]  H. Elman,et al.  Efficient preconditioning of the linearized Navier-Stokes , 1999 .

[16]  G. Gambolati,et al.  Can Venice be raised by pumping water underground? A pilot project to help decide , 2008 .

[17]  Valeria Simoncini,et al.  Krylov Subspace Methods for Saddle Point Problems with Indefinite Preconditioning , 2002, SIAM J. Matrix Anal. Appl..

[18]  V. Simoncini,et al.  Block--diagonal and indefinite symmetric preconditioners for mixed finite element formulations , 1999 .

[19]  Michele Benzi,et al.  A Sparse Approximate Inverse Preconditioner for the Conjugate Gradient Method , 1996, SIAM J. Sci. Comput..

[20]  Luca Bergamaschi,et al.  Erratum to: Inexact constraint preconditioners for linear systems arising in interior point methods , 2011, Comput. Optim. Appl..

[21]  M. Benzi,et al.  A comparative study of sparse approximate inverse preconditioners , 1999 .

[22]  C. Durazzi,et al.  Indefinitely preconditioned conjugate gradient method for large sparse equality and inequality constrained quadratic problems , 2003, Numer. Linear Algebra Appl..

[23]  M. Biot General Theory of Three‐Dimensional Consolidation , 1941 .

[24]  Andrew J. Wathen,et al.  Performance and analysis of saddle point preconditioners for the discrete steady-state Navier-Stokes equations , 2002, Numerische Mathematik.

[25]  Valeria Simoncini,et al.  Block triangular preconditioners for symmetric saddle-point problems , 2004 .

[26]  K. Toh,et al.  Block preconditioners for symmetric indefinite linear systems , 2004 .

[27]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[28]  Tullio Tucciarelli,et al.  A 3-D finite element conjugate gradient model of subsurface flow with automatic mesh generation , 1986 .

[29]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[30]  Nicholas I. M. Gould,et al.  Implicit-Factorization Preconditioning and Iterative Solvers for Regularized Saddle-Point Systems , 2006, SIAM J. Matrix Anal. Appl..

[31]  Michele Benzi,et al.  On the eigenvalues of a class of saddle point matrices , 2006, Numerische Mathematik.

[32]  H. Sue Dollar,et al.  Constraint-Style Preconditioners for Regularized Saddle Point Problems , 2007, SIAM J. Matrix Anal. Appl..

[33]  L. Luksan,et al.  Indefinitely preconditioned inexact Newton method for large sparse equality constrained non‐linear programming problems , 1998 .

[34]  Luca Bergamaschi,et al.  Preconditioning Indefinite Systems in Interior Point Methods for Optimization , 2004, Comput. Optim. Appl..

[35]  Nicholas I. M. Gould,et al.  Constraint Preconditioning for Indefinite Linear Systems , 2000, SIAM J. Matrix Anal. Appl..