Revisiting CFHTLenS cosmic shear: Optimal E/B mode decomposition using COSEBIs and compressed COSEBIs

We present a re-analysis of the CFHTLenS weak gravitational lensing survey using Complete Orthogonal Sets of E/B-mode Integrals, known as COSEBIs. COSEBIs provide a complete set of functions to efficiently separate E-modes from B-modes and hence allow for robust and stringent tests for systematic errors in the data. This analysis reveals significant B-modes on large angular scales that were not previously seen using the standard E/B decomposition analyses. We find that the significance of the B-modes is enhanced when the data are split by galaxy type and analysed in tomographic redshift bins. Adding tomographic bins to the analysis increases the number of COSEBIs modes, which results in a less-accurate estimation of the covariance matrix from a set of simulations. We therefore also present the first compressed COSEBIs analysis of survey data, where the COSEBIs modes are optimally combined based on their sensitivity to cosmological parameters. In this tomographic CCOSEBIs analysis, we find the B-modes to be consistent with zero when the full range of angular scales are considered.

[1]  T. Kitching,et al.  Flat-Sky Pseudo-Cls Analysis for Weak Gravitational Lensing , 2016, Monthly Notices of the Royal Astronomical Society.

[2]  C. Heymans,et al.  CFHTLenS and RCSLenS: testing photometric redshift distributions using angular cross-correlations with spectroscopic galaxy surveys , 2015, 1512.03626.

[3]  A. Heavens,et al.  Parameter inference with estimated covariance matrices , 2015, 1511.05969.

[4]  G. Hinshaw,et al.  QUANTIFYING DISCORDANCE IN THE 2015 PLANCK CMB SPECTRUM , 2015, 1511.00055.

[5]  M. Raveri Are cosmological data sets consistent with each other within the $\Lambda$ cold dark matter model? , 2015, 1510.00688.

[6]  H. Hoekstra,et al.  A direct measurement of tomographic lensing power spectra from CFHTLenS , 2015, 1509.04071.

[7]  C. B. D'Andrea,et al.  Cosmology from cosmic shear with Dark Energy Survey science verification data , 2015, 1507.05552.

[8]  Edwin Valentijn,et al.  Gravitational lensing analysis of the Kilo-Degree Survey , 2015, 1507.00738.

[9]  Shahab Joudaki,et al.  An accurate halo model for fitting non-linear cosmological power spectra and baryonic feedback models , 2015, 1505.07833.

[10]  R. Nichol,et al.  Cosmic shear measurements with Dark Energy Survey science verification data , 2015, 1507.05598.

[11]  C. A. Oxborrow,et al.  Planck 2015 results. XIV. Dark energy and modified gravity , 2015, 1502.01590.

[12]  D. Parkinson,et al.  Constraints and tensions in testing general relativity from Planck and CFHTLenS data including intrinsic alignment systematics , 2015, 1501.03119.

[13]  Martin Kilbinger,et al.  Cosmology with cosmic shear observations: a review , 2014, Reports on progress in physics. Physical Society.

[14]  P. Schneider,et al.  A New Data Compression Method and its Application to Cosmic Shear Analysis , 2014, 1409.0863.

[15]  S. Bridle,et al.  Cosmic Discordance: Are Planck CMB and CFHTLenS weak lensing measurements out of tune? , 2014, 1408.4742.

[16]  C. Heymans,et al.  Baryons, neutrinos, feedback and weak gravitational lensing , 2014, 1407.4301.

[17]  Bernard Muschielok,et al.  The 4MOST instrument concept overview , 2014, Astronomical Telescopes and Instrumentation.

[18]  Ludovic van Waerbeke,et al.  Simulations of weak gravitational lensing – II. Including finite support effects in cosmic shear covariance matrices , 2014, 1406.0543.

[19]  H. Hoekstra,et al.  CFHTLenS: cosmological constraints from a combination of cosmic shear two-point and three-point correlations , 2014, 1404.5469.

[20]  Benjamin Joachimi,et al.  Estimating cosmological parameter covariance , 2014, 1402.6983.

[21]  Jean Coupon,et al.  athena: Tree code for second-order correlation functions , 2014 .

[22]  H. Hoekstra,et al.  3D cosmic shear: cosmology from CFHTLenS , 2014, 1401.6842.

[23]  R. Hložek,et al.  Planck data reconsidered , 2013, 1312.3313.

[24]  A. Moss,et al.  Evidence for massive neutrinos from cosmic microwave background and lensing observations. , 2013, Physical review letters.

[25]  L. Verde,et al.  Lack of) Cosmological evidence for dark radiation after Planck , 2013, 1307.2904.

[26]  H. Hoekstra,et al.  CFHTLenS: the relation between galaxy dark matter haloes and baryons from weak gravitational lensing , 2013, 1304.4265.

[27]  Yannick Mellier,et al.  CFHTLenS tomographic weak lensing cosmological parameter constraints: Mitigating the impact of intrinsic galaxy alignments , 2013, 1303.1808.

[28]  Yannick Mellier,et al.  CFHTLenS: combined probe cosmological model comparison using 2D weak gravitational lensing , 2012, 1212.3338.

[29]  H. Hoekstra,et al.  CFHTLenS: testing the laws of gravity with tomographic weak lensing and redshift-space distortions , 2012, 1212.3339.

[30]  Yannick Mellier,et al.  CFHTLenS tomographic weak lensing: quantifying accurate redshift distributions , 2012, 1212.3327.

[31]  H. Hoekstra,et al.  Bayesian galaxy shape measurement for weak lensing surveys – III. Application to the Canada–France–Hawaii Telescope Lensing Survey , 2012, 1210.8201.

[32]  Joop Schaye,et al.  Effect of baryonic feedback on two- and three-point shear statistics: prospects for detection and improved modelling , 2012, 1210.7303.

[33]  L. Miller,et al.  CFHTLenS: the Canada–France–Hawaii Telescope Lensing Survey – imaging data and catalogue products , 2012, 1210.0032.

[34]  Takahiro Nishimichi,et al.  REVISING THE HALOFIT MODEL FOR THE NONLINEAR MATTER POWER SPECTRUM , 2012, 1208.2701.

[35]  Massimo Viola,et al.  Means of confusion: how pixel noise affects shear estimates for weak gravitational lensing , 2012, 1204.5147.

[36]  P. Schneider,et al.  Cosmic shear tomography and efficient data compression using COSEBIs , 2012, 1201.2669.

[37]  D. Schlegel,et al.  Seeing in the dark – II. Cosmic shear in the Sloan Digital Sky Survey , 2011, 1112.3143.

[38]  H. Hoekstra,et al.  CFHTLenS: Improving the quality of photometric redshifts with precision photometry , 2011, 1111.4434.

[39]  R. Nichol,et al.  Euclid Definition Study Report , 2011, 1110.3193.

[40]  H. Hoekstra,et al.  Quantifying the effect of baryon physics on weak lensing tomography , 2011, 1105.1075.

[41]  J. Blazek,et al.  Testing the tidal alignment model of galaxy intrinsic alignment , 2011, 1101.4017.

[42]  Peter Melchior,et al.  Dos and don'ts of reduced chi-squared , 2010, 1012.3754.

[43]  T. Eifler Weak-lensing statistics from the Coyote Universe , 2010, 1012.2978.

[44]  P. Schneider,et al.  COSEBIs: Extracting the full E-/B-mode information from cosmic shear correlation functions , 2010, 1002.2136.

[45]  M. Kilbinger,et al.  A new cosmic shear function: optimized E-/B-mode decomposition on a finite interval , 2009, 0907.0795.

[46]  P. Schneider,et al.  Ray-tracing through the Millennium Simulation: Born corrections and lens-lens coupling in cosmic shear and galaxy-galaxy lensing , 2008, 0809.5035.

[47]  P. Schneider,et al.  The removal of shear-ellipticity correlations from the cosmic shear signal , 2008, 0905.0393.

[48]  P. Schneider,et al.  Why your model parameter confidences might be too optimistic - unbiased estimation of the inverse covariance matrix , 2006, astro-ph/0608064.

[49]  P. Schneider,et al.  The ring statistics - how to separate E- and B-modes of cosmic shear correlation functions on a finite interval , 2006, astro-ph/0605084.

[50]  J. Peacock,et al.  Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.

[51]  Y. Mellier,et al.  B-modes in cosmic shear from source redshift clustering , 2001, astro-ph/0112441.

[52]  P. Schneider,et al.  Weak gravitational lensing , 1999, Scholarpedia.

[53]  P. Schneider,et al.  A NEW MEASURE FOR COSMIC SHEAR , 1997, astro-ph/9708143.

[54]  J. R. Bond,et al.  Cosmic background radiation anisotropies in universes dominated by nonbaryonic dark matter , 1984 .

[55]  William H. Press,et al.  Numerical recipes in C , 2002 .