Computing Persistent Homology of Flag Complexes via Strong Collapses

In this article, we focus on the problem of computing Persistent Homology of a flag tower, i.e. a sequence of flag complexes connected by simplicial maps. We show that if we restrict the class of simplicial complexes to flag complexes, we can achieve decisive improvement in terms of time and space complexities with respect to previous work. We show that strong collapses of flag complexes can be computed in time O(k^2 v^2) where v is the number of vertices of the complex and k is the maximal degree of its graph. Moreover we can strong collapse a flag complex knowing only its 1-skeleton and the resulting complex is also a flag complex. When we strong collapse the complexes in a flag tower, we obtain a reduced sequence that is also a flag tower we call the core flag tower. We then convert the core flag tower to an equivalent filtration to compute its PH. Here again, we only use the 1-skeletons of the complexes. The resulting method is simple and extremely efficient.

[1]  R. Ho Algebraic Topology , 2022 .

[2]  Mason A. Porter,et al.  A roadmap for the computation of persistent homology , 2015, EPJ Data Science.

[3]  Konstantin Mischaikow,et al.  Morse Theory for Filtrations and Efficient Computation of Persistent Homology , 2013, Discret. Comput. Geom..

[4]  Sharath Raghvendra,et al.  Polynomial-Sized Topological Approximations Using the Permutahedron , 2016, Discrete & Computational Geometry.

[5]  Afra Zomorodian,et al.  The tidy set: a minimal simplicial set for computing homology of clique complexes , 2010, SCG.

[6]  Dmitriy Morozov,et al.  Zigzag persistent homology and real-valued functions , 2009, SCG '09.

[7]  David Cohen-Steiner,et al.  Stability of Persistence Diagrams , 2005, Discret. Comput. Geom..

[8]  Jean-Daniel Boissonnat,et al.  An Efficient Representation for Filtrations of Simplicial Complexes , 2016, SODA.

[9]  Michael Kerber,et al.  Approximate Čech Complex in Low and High Dimensions , 2013, ISAAC.

[10]  Tamal K. Dey,et al.  Filtration Simplification for Persistent Homology via Edge Contraction , 2018, Journal of Mathematical Imaging and Vision.

[11]  Herbert Edelsbrunner,et al.  Topological persistence and simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[12]  Michael Kerber,et al.  Barcodes of Towers and a Streaming Algorithm for Persistent Homology , 2019, Discret. Comput. Geom..

[13]  Ulrich Bauer,et al.  PHAT - Persistent Homology Algorithms Toolbox , 2014, ICMS.

[14]  Afra Zomorodian,et al.  Computing Persistent Homology , 2004, SCG '04.

[15]  Jean-Daniel Boissonnat,et al.  Building Efficient and Compact Data Structures for Simplicial Complexes , 2016, Algorithmica.

[16]  Juraj Stacho,et al.  Complexity of simplicial homology and independence complexes of chordal graphs , 2016, Comput. Geom..

[17]  Martin Tancer Recognition of Collapsible Complexes is NP-Complete , 2016, Discret. Comput. Geom..

[18]  Herbert Edelsbrunner,et al.  Topology preserving edge contraction , 1998 .

[19]  Don Sheehy,et al.  Linear-Size Approximations to the Vietoris–Rips Filtration , 2012, Discrete & Computational Geometry.

[20]  Elias Gabriel Minian,et al.  Strong Homotopy Types, Nerves and Collapses , 2009, Discret. Comput. Geom..

[21]  Jean-Daniel Boissonnat,et al.  Strong Collapse for Persistence , 2018, ESA.

[22]  Vin de Silva,et al.  On the Local Behavior of Spaces of Natural Images , 2007, International Journal of Computer Vision.

[23]  André Lieutier,et al.  Efficient Data Structure for Representing and Simplifying Simplicial complexes in High Dimensions , 2012, Int. J. Comput. Geom. Appl..

[24]  G. Carlsson,et al.  Topology of viral evolution , 2013, Proceedings of the National Academy of Sciences.

[25]  Ulrich Bauer,et al.  Clear and Compress: Computing Persistent Homology in Chunks , 2013, Topological Methods in Data Analysis and Visualization.

[26]  Ananthram Swami,et al.  Simplifying the homology of networks via strong collapses , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[27]  Tamal K. Dey,et al.  Computing Topological Persistence for Simplicial Maps , 2012, SoCG.

[28]  E. Fieux,et al.  Foldings in graphs and relations with simplicial complexes and posets , 2012, Discret. Math..

[29]  Steve Oudot,et al.  Towards persistence-based reconstruction in euclidean spaces , 2007, SCG '08.

[30]  Jose A. Perea,et al.  A Klein-Bottle-Based Dictionary for Texture Representation , 2014, International Journal of Computer Vision.

[31]  Chao Chen,et al.  Persistent Homology Computation with a Twist , 2011 .

[32]  Primoz Skraba,et al.  Zigzag persistent homology in matrix multiplication time , 2011, SoCG '11.

[33]  Hamid Krim,et al.  Computing persistent features in big data: A distributed dimension reduction approach , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[34]  François Le Gall,et al.  Powers of tensors and fast matrix multiplication , 2014, ISSAC.

[35]  J. Whitehead Simplicial Spaces, Nuclei and m‐Groups , 1939 .

[36]  C. H. Dowker HOMOLOGY GROUPS OF RELATIONS , 1952 .

[37]  Vin de Silva,et al.  Coverage in sensor networks via persistent homology , 2007 .

[38]  Brittany Terese Fasy,et al.  Introduction to the R package TDA , 2014, ArXiv.

[39]  P. Dlotko,et al.  SIMPLIFICATION OF COMPLEXES FOR PERSISTENT HOMOLOGY COMPUTATIONS , 2013, 1304.8074.

[40]  Steve Oudot,et al.  Zigzag Persistence via Reflections and Transpositions , 2015, SODA.