Stability of β-plane Kolmogorov flow

Abstract We show that the geophysical β-effect strongly affects the linear stability of a sinusoidal Kolmogorov flow. If α denotes the angle between the flow direction and the planetary vorticity gradient then the critical Reynolds’ number, Rc(α,β), is zero for β≠0, provided that sin 2α≠0 . In particular, the small β limit is discontinuous: lim β→0 R c (α,β)=0 , rather than the classical value R c (α,0)= 2 . Moreover, though the Kolmogorov flow is non-zonal, the most unstable modes are large-scale quasizonal flows. These results are obtained using asymptotic analysis and confirmed by numerical solution. The simulations show the saturating effects of nonlinearities.

[1]  Gareth P. Williams Planetary Circulations: 1. Barotropic Representation of Jovian and Terrestrial Turbulence , 1978 .

[2]  J. Pedlosky Geophysical Fluid Dynamics , 1979 .

[3]  L. Gray,et al.  Concerning the effect of surface drag on the circulation of a baroclinic planetary atmosphere , 1986 .

[4]  B. Hoskins,et al.  The Life Cycles of Some Nonlinear Baroclinic Waves , 1978 .

[5]  M. Yamada,et al.  The theory of stability of spatially periodic parallel flows , 1983, Journal of Fluid Mechanics.

[6]  M. Maltrud,et al.  Energy spectra and coherent structures in forced two-dimensional and beta-plane turbulence , 1991, Journal of Fluid Mechanics.

[7]  G. Stuhne One-dimensional dynamics of zonal jets on rapidly rotating spherical shells , 2001 .

[8]  Roberto Benzi,et al.  High-Resolution Numerical Experiments for Forced Two-Dimensional Turbulence , 1988 .

[9]  E. Lorenz Barotropic Instability of Rossby Wave Motion , 1972 .

[10]  U. Frisch,et al.  Dispersive Stabilization of the Inverse Cascade for the Kolmogorov Flow , 1999 .

[11]  P. Rhines Waves and turbulence on a beta-plane , 1975, Journal of Fluid Mechanics.

[12]  U. Frisch,et al.  Negative eddy viscosity in isotropically forced two-dimensional flow: linear and nonlinear dynamics , 1994, Journal of Fluid Mechanics.

[13]  A. E. Gill The stability of planetary waves on an infinite beta‐plane , 1974 .

[14]  S. A. Orszag,et al.  Direct numerical simulation tests of eddy viscosity in two dimensions , 1994 .

[15]  B. Galperin,et al.  Anisotropic spectra in two-dimensional turbulence on the surface of a rotating sphere , 2001 .

[16]  G. Vallis,et al.  Generation of Mean Flows and Jets on a Beta Plane and over Topography , 1993 .

[17]  William R. Young,et al.  Slow Evolution of Zonal Jets on the Beta Plane , 1999 .

[18]  G. Sivashinsky,et al.  Negative viscosity effect in large-scale flows , 1985 .

[19]  R. Salmon,et al.  Baroclinic instability and geostrophic turbulence , 1980 .

[20]  L. D. Meshalkin,et al.  Investigation of the stability of a stationary solution of a system of equations for the plane movement of an incompressible viscous liquid , 1961 .

[21]  A. Chekhlov,et al.  LARGE SCALE DRAG REPRESENTATION IN SIMULATIONS OF TWO-DIMENSIONAL TURBULENCE , 1999 .

[22]  Uriel Frisch,et al.  Large-scale Kolmogorov flow on the beta-plane and resonant wave interactions , 1996 .

[23]  W. Robinson,et al.  Two-dimensional turbulence and persistent zonal jets in a global barotropic model , 1998 .

[24]  M. Yamada,et al.  The instability of rhombic cell flows , 1987 .

[25]  R. Panetta,et al.  Zonal Jets in Wide Baroclinically Unstable Regions: Persistence and Scale Selection , 1993 .

[26]  The stability of spatially periodic flows , 1981 .

[27]  M. Maltrud,et al.  Energy and enstrophy transfer in numerical simulations of two-dimensional turbulence , 1993 .