Ultimate bound and optimal measurement for estimation of coupling constant in Tavis–Cummings model
暂无分享,去创建一个
[1] Ning Li,et al. Quantum Entanglement in Two-Photon Tavis–Cummings Model with a Kerr Nonlinearity , 2007 .
[2] Entanglement sharing in the two-atom Tavis-Cummings model (10 pages) , 2003, quant-ph/0306015.
[3] Cai Jin-fang,et al. Entanglement in Three-Atom Tavis-Cummings Model Induced by a Thermal Field , 2005 .
[4] J. Timonen,et al. Exact solution of generalized Tavis - Cummings models in quantum optics , 1996 .
[5] M. Paris. Quantum estimation for quantum technology , 2008, 0804.2981.
[6] B. L. Gyorffy,et al. Dynamics of entanglement and ‘attractor’ states in the Tavis–Cummings model , 2009, 0906.4005.
[7] Jian Ma,et al. Fisher information in a quantum-critical environment , 2010 .
[8] W. Linden,et al. Quantum phase transition and excitations of the Tavis-Cummings lattice model , 2010, 1005.1501.
[9] M. Genoni,et al. Optimal quantum estimation of the coupling constant of Jaynes-Cummings interaction , 2011, 1110.6823.
[10] S. Braunstein,et al. Statistical distance and the geometry of quantum states. , 1994, Physical review letters.
[11] R. Dicke. Coherence in Spontaneous Radiation Processes , 1954 .
[12] Paolo Zanardi,et al. Quantum criticality as a resource for quantum estimation , 2007, 0708.1089.
[13] Y. Q. Zhang,et al. Dynamics of quantum discord in two Tavis-Cummings models with classical driving fields , 2011 .
[14] A. Holevo. Statistical structure of quantum theory , 2001 .
[15] F. Nori,et al. Quantum Fisher information as a signature of the superradiant quantum phase transition , 2013, 1312.1426.
[16] A. Obada,et al. Some entanglement features of a three-atom Tavis–Cummings model: a cooperative case , 2009, 0908.4337.
[17] Hiroshi Imai,et al. Quantum parameter estimation of a generalized Pauli channel , 2003 .
[18] Xia Yun-jie,et al. The entanglement character of two entangled atoms in Tavis-Cummings model , 2006 .
[19] P. Maurer,et al. Using Sideband Transitions for Two-Qubit Operations in Superconducting Circuits , 2008, 0812.2678.
[20] M. Kim,et al. Quantum limits to gravity estimation with optomechanics , 2017, 1707.00025.
[21] G. Milburn,et al. Generalized uncertainty relations: Theory, examples, and Lorentz invariance , 1995, quant-ph/9507004.
[22] J. C. Retamal,et al. Entanglement properties in the Inhomogeneous Tavis-Cummings model , 2007 .
[23] Matteo G.A. Paris,et al. Quantum metrology in Lipkin-Meshkov-Glick critical systems , 2014, 1406.5766.
[24] Zhong-Qi Ma,et al. Tripartite entanglement dynamics for mixed states in the Tavis-Cummings model with intrinsic decoherence , 2012 .
[25] C. Helstrom. Quantum detection and estimation theory , 1969 .
[26] J. Xu,et al. Enhancement of stationary state quantum discord in Tavis–Cummings model by nonlinear Kerr-like medium , 2011 .
[27] J. Twamley,et al. Quantum phase transition in a driven Tavis–Cummings model , 2013 .
[28] F. W. Cummings,et al. Exact Solution for an N-Molecule-Radiation-Field Hamiltonian , 1968 .
[29] R. Gill,et al. State estimation for large ensembles , 1999, quant-ph/9902063.
[30] Marco Genovese,et al. Optimal estimation of parameters of an entangled quantum state , 2017 .
[31] Sammy Ragy,et al. Compatibility in multiparameter quantum metrology , 2016, 1608.02634.
[32] Yuan Feng,et al. Parameter Estimation of Quantum Channels , 2008, IEEE Transactions on Information Theory.
[33] A. Obada,et al. Periodic Squeezing in the Tavis-Cummings Model , 1993 .
[34] J. Liang,et al. Berry phase in Tavis-Cummings model , 2007 .
[35] Lorenzo Campos Venuti,et al. Optimal quantum estimation in spin systems at criticality , 2008, 0807.3213.
[36] Akio Fujiwara,et al. Quantum channel identification problem , 2001 .
[37] F. W. Cummings,et al. Approximate Solutions for an N -Molecule-Radiation-Field Hamiltonian , 1969 .