Ultimate bound and optimal measurement for estimation of coupling constant in Tavis–Cummings model

We seek to study the problem of estimating the atoms-field coupling constant in Tavis–Cummings model for interaction between two atoms and an electromagnetic field by means of local estimation theory. We calculate the quantum Fisher information (QFI) for the most general pure probe state that undergoes evolution generated by the Hamiltonian of the Tavis–Cummings model; then, proper probe states which maximize the QFI are determined. Furthermore, we consider subspaces separately and show that QFI for atomic subspace (contains both qubits) and cavity field subspace can reach the maximum value of QFI in the whole space by choosing proper initial state. Finally, the optimal measurement that saturates the Cramer–Rao bound, i.e., the measurement with Fisher information equal to QFI, for considered states are determined in the whole space and the subspaces, separately.

[1]  Ning Li,et al.  Quantum Entanglement in Two-Photon Tavis–Cummings Model with a Kerr Nonlinearity , 2007 .

[2]  Entanglement sharing in the two-atom Tavis-Cummings model (10 pages) , 2003, quant-ph/0306015.

[3]  Cai Jin-fang,et al.  Entanglement in Three-Atom Tavis-Cummings Model Induced by a Thermal Field , 2005 .

[4]  J. Timonen,et al.  Exact solution of generalized Tavis - Cummings models in quantum optics , 1996 .

[5]  M. Paris Quantum estimation for quantum technology , 2008, 0804.2981.

[6]  B. L. Gyorffy,et al.  Dynamics of entanglement and ‘attractor’ states in the Tavis–Cummings model , 2009, 0906.4005.

[7]  Jian Ma,et al.  Fisher information in a quantum-critical environment , 2010 .

[8]  W. Linden,et al.  Quantum phase transition and excitations of the Tavis-Cummings lattice model , 2010, 1005.1501.

[9]  M. Genoni,et al.  Optimal quantum estimation of the coupling constant of Jaynes-Cummings interaction , 2011, 1110.6823.

[10]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[11]  R. Dicke Coherence in Spontaneous Radiation Processes , 1954 .

[12]  Paolo Zanardi,et al.  Quantum criticality as a resource for quantum estimation , 2007, 0708.1089.

[13]  Y. Q. Zhang,et al.  Dynamics of quantum discord in two Tavis-Cummings models with classical driving fields , 2011 .

[14]  A. Holevo Statistical structure of quantum theory , 2001 .

[15]  F. Nori,et al.  Quantum Fisher information as a signature of the superradiant quantum phase transition , 2013, 1312.1426.

[16]  A. Obada,et al.  Some entanglement features of a three-atom Tavis–Cummings model: a cooperative case , 2009, 0908.4337.

[17]  Hiroshi Imai,et al.  Quantum parameter estimation of a generalized Pauli channel , 2003 .

[18]  Xia Yun-jie,et al.  The entanglement character of two entangled atoms in Tavis-Cummings model , 2006 .

[19]  P. Maurer,et al.  Using Sideband Transitions for Two-Qubit Operations in Superconducting Circuits , 2008, 0812.2678.

[20]  M. Kim,et al.  Quantum limits to gravity estimation with optomechanics , 2017, 1707.00025.

[21]  G. Milburn,et al.  Generalized uncertainty relations: Theory, examples, and Lorentz invariance , 1995, quant-ph/9507004.

[22]  J. C. Retamal,et al.  Entanglement properties in the Inhomogeneous Tavis-Cummings model , 2007 .

[23]  Matteo G.A. Paris,et al.  Quantum metrology in Lipkin-Meshkov-Glick critical systems , 2014, 1406.5766.

[24]  Zhong-Qi Ma,et al.  Tripartite entanglement dynamics for mixed states in the Tavis-Cummings model with intrinsic decoherence , 2012 .

[25]  C. Helstrom Quantum detection and estimation theory , 1969 .

[26]  J. Xu,et al.  Enhancement of stationary state quantum discord in Tavis–Cummings model by nonlinear Kerr-like medium , 2011 .

[27]  J. Twamley,et al.  Quantum phase transition in a driven Tavis–Cummings model , 2013 .

[28]  F. W. Cummings,et al.  Exact Solution for an N-Molecule-Radiation-Field Hamiltonian , 1968 .

[29]  R. Gill,et al.  State estimation for large ensembles , 1999, quant-ph/9902063.

[30]  Marco Genovese,et al.  Optimal estimation of parameters of an entangled quantum state , 2017 .

[31]  Sammy Ragy,et al.  Compatibility in multiparameter quantum metrology , 2016, 1608.02634.

[32]  Yuan Feng,et al.  Parameter Estimation of Quantum Channels , 2008, IEEE Transactions on Information Theory.

[33]  A. Obada,et al.  Periodic Squeezing in the Tavis-Cummings Model , 1993 .

[34]  J. Liang,et al.  Berry phase in Tavis-Cummings model , 2007 .

[35]  Lorenzo Campos Venuti,et al.  Optimal quantum estimation in spin systems at criticality , 2008, 0807.3213.

[36]  Akio Fujiwara,et al.  Quantum channel identification problem , 2001 .

[37]  F. W. Cummings,et al.  Approximate Solutions for an N -Molecule-Radiation-Field Hamiltonian , 1969 .