Braided Zesting and Its Applications

We give a rigorous development of the construction of new braided fusion categories from a given category known as zesting. This method has been used in the past to provide categorifications of new fusion rule algebras, modular data, and minimal modular extensions of super-modular categories. Here we provide a complete obstruction theory and parameterization approach to the construction and illustrate its utility with several examples.

[1]  Samuel Eilenberg,et al.  On the Groups H(Π, n), I , 1953 .

[2]  N. Bourbaki,et al.  Lie Groups and Lie Algebras: Chapters 1-3 , 1989 .

[3]  Tobias J. Hagge,et al.  Fermionic Modular Categories and the 16-fold Way , 2016, 1603.09294.

[4]  C. Weibel,et al.  AN INTRODUCTION TO HOMOLOGICAL ALGEBRA , 1996 .

[5]  P. Bruillard,et al.  Dimension as a quantum statistic and the classification of metaplectic categories , 2017, Topological Phases of Matter and Quantum Computation.

[6]  Nilpotent fusion categories , 2006, math/0610726.

[7]  A. Kirillov,et al.  Lectures on tensor categories and modular functors , 2000 .

[8]  Shawn X. Cui,et al.  On Gauging Symmetry of Modular Categories , 2015, 1510.03475.

[9]  C. Vafa Toward classification of conformal theories , 1988 .

[10]  V. Drinfeld,et al.  On braided fusion categories I , 2009, 0906.0620.

[11]  Saunders MacLane,et al.  On the Groups H(Π, n), II: Methods of Computation , 1954 .

[12]  D. Naidu,et al.  A Finiteness Property for Braided Fusion Categories , 2009, 0903.4157.

[13]  Alain Bruguières Catégories prémodulaires, modularisations et invariants des variétés de dimension 3 , 2000 .

[14]  P. Schauenburg,et al.  Modular categories are not determined by their modular data , 2017, Letters in Mathematical Physics.

[15]  D. Naidu,et al.  Classification of Integral Modular Categories of Frobenius–Perron Dimension pq 4 and p 2 q 2 , 2013, Canadian Mathematical Bulletin.

[16]  D. Naidu,et al.  Centers of graded fusion categories , 2009, 0905.3117.

[17]  D. Kazhdan,et al.  Reconstructing monoidal categories , 1993 .

[18]  Eric C. Rowell,et al.  Rank-finiteness for modular categories , 2013, 1310.7050.

[19]  From Quantum Groups to Unitary Modular Tensor Categories , 2005, math/0503226.

[20]  Eckhard Meinrenken,et al.  LIE GROUPS AND LIE ALGEBRAS , 2021, Lie Groups, Lie Algebras, and Cohomology. (MN-34), Volume 34.

[21]  A. Henriques,et al.  Categorified trace for module tensor categories over braided tensor categories , 2015, Documenta Mathematica.

[22]  Jean-Pierre Serre,et al.  Cohomology of group extensions , 1953 .

[23]  P. Etingof,et al.  Fusion categories and homotopy theory , 2009, 0909.3140.

[24]  P. Etingof,et al.  WEAKLY GROUP-THEORETICAL AND SOLVABLE FUSION CATEGORIES , 2008, 0809.3031.