Biofuels as fuels for high temperature fuel cells

Based on mathematical modeling and numerical simulations, influences of various biofuels on high temperature fuel cell performance are presented. Governing equations of high temperature fuel cell modeling are given. Adequate simulators of both SOFC and MCFC have been done and described. Performances of these fuel cells with dierent biofuels are shown. Some characteristics are given and described. Advantages and disadvantages of various biofuels from system performance point of view are pointed out. An analysis of various biofuels as fuels for Solid Oxide Fuel Cell (SOFC) and Molten Carbonate Fuel Cell (MCFC) is presented. The results are compared with Natural Gas (NG) as a reference fuel. The biofuels are characterized by both lower eciency and lower fuel utilization factors in comparison with NG. The presented results are based on a 0D mathematical model in design point calculation. The governing equations of the model are presented.

[1]  Mohsen Hamedi,et al.  Modeling and Optimization of Anode‐Supported Solid Oxide Fuel Cells on Cell Parameters via Artificial Neural Network and Genetic Algorithm , 2012 .

[2]  K. Janusz-Szymańska Efektywność ekonomiczna układu gazowo-parowego zintegrowanego ze zgazowaniem węgla oraz z instalacją CCS , 2012 .

[3]  François Maréchal,et al.  Process flow model of solid oxide fuel cell system supplied with sewage biogas , 2004 .

[4]  G. Marbán,et al.  Towards the hydrogen economy , 2007 .

[5]  Viktor Hacker,et al.  Hydrogen for fuel cells from ethanol by steam-reforming, partial-oxidation and combined auto-thermal reforming: A thermodynamic analysis , 2008 .

[6]  Jarosław Milewski,et al.  A reduced order model of Molten Carbonate Fuel Cell: A proposal , 2013 .

[7]  Chonghun Han,et al.  A heuristic method of variable selection based on principal component analysis and factor analysis for monitoring in a 300 kW MCFC power plant , 2012 .

[8]  Wojciech M. Budzianowski,et al.  Negative carbon intensity of renewable energy technologies involving biomass or carbon dioxide as inputs , 2012 .

[9]  Robert J. Kee,et al.  Solid-oxide fuel cells with hydrocarbon fuels , 2005 .

[10]  Jarosław Milewski,et al.  Advanced Methods of Solid Oxide Fuel Cell Modeling , 2011 .

[11]  Anna Skorek-Osikowska,et al.  Porównanie efektywności ekonomicznej układów kogeneracyjnych z generatorem gazu procesowego GazEla , 2012 .

[12]  Kyriakos D. Panopoulos,et al.  Integrated CHP with autothermal biomass gasification and SOFC–MGT , 2008 .

[13]  Paulina Pianko-Oprych,et al.  Przegląd metod modelowania numerycznego mikrorurowych stałotlenkowych stosów ogniw paliwowych , 2012 .

[14]  Jarosław Milewski,et al.  Mathematical Model of SOFC (Solid Oxide Fuel Cell) for Power Plant Simulations , 2004 .

[15]  Jarosław Milewski,et al.  Reducing CO2 Emissions From a Coal Fired Power Plant by Using a Molten Carbonate Fuel Cell , 2008 .

[16]  Atsushi Tsutsumi,et al.  Advanced integrated gasification combined cycle (A-IGCC) by exergy recuperation-Technical challenges for future generations , 2012 .

[17]  Atsushi Tsutsumi,et al.  Analysis of IGFC With Exergy Recuperation and Carbon Dioxide Separation Unit , 2012 .

[18]  Nigel P. Brandon,et al.  Methanol as a direct fuel in intermediate temperature (500–600∘C) solid oxide fuel cells with copper based anodes , 2005 .

[19]  Suresh G. Advani,et al.  Design and characterization of an electronically controlled variable flow rate ejector for fuel cell applications , 2012 .

[20]  Suttichai Assabumrungrat,et al.  Thermodynamic analysis of carbon formation in a solid oxide fuel cell with a direct internal reformer fuelled by methanol , 2005 .

[21]  G. Cinti,et al.  Carbon capture with molten carbonate fuel cells: Experimental tests and fuel cell performance assessment , 2012 .

[22]  Hesamoddin Marzooghi,et al.  Dynamic modeling of solid oxide fuel cell stack based on local linear model tree algorithm , 2012 .

[23]  Amornchai Arpornwichanop,et al.  Neural network hybrid model of a direct internal reforming solid oxide fuel cell , 2012 .

[24]  Petronilla Fragiacomo,et al.  Electrical and electrical–thermal power plants with molten carbonate fuel cell/gas turbine‐integrated systems , 2012 .

[25]  Petronilla Fragiacomo,et al.  A methodology for improving the performance of molten carbonate fuel cell/gas turbine hybrid systems , 2012 .