Biofuels as fuels for high temperature fuel cells
暂无分享,去创建一个
[1] Mohsen Hamedi,et al. Modeling and Optimization of Anode‐Supported Solid Oxide Fuel Cells on Cell Parameters via Artificial Neural Network and Genetic Algorithm , 2012 .
[2] K. Janusz-Szymańska. Efektywność ekonomiczna układu gazowo-parowego zintegrowanego ze zgazowaniem węgla oraz z instalacją CCS , 2012 .
[3] François Maréchal,et al. Process flow model of solid oxide fuel cell system supplied with sewage biogas , 2004 .
[4] G. Marbán,et al. Towards the hydrogen economy , 2007 .
[5] Viktor Hacker,et al. Hydrogen for fuel cells from ethanol by steam-reforming, partial-oxidation and combined auto-thermal reforming: A thermodynamic analysis , 2008 .
[6] Jarosław Milewski,et al. A reduced order model of Molten Carbonate Fuel Cell: A proposal , 2013 .
[7] Chonghun Han,et al. A heuristic method of variable selection based on principal component analysis and factor analysis for monitoring in a 300 kW MCFC power plant , 2012 .
[8] Wojciech M. Budzianowski,et al. Negative carbon intensity of renewable energy technologies involving biomass or carbon dioxide as inputs , 2012 .
[9] Robert J. Kee,et al. Solid-oxide fuel cells with hydrocarbon fuels , 2005 .
[10] Jarosław Milewski,et al. Advanced Methods of Solid Oxide Fuel Cell Modeling , 2011 .
[11] Anna Skorek-Osikowska,et al. Porównanie efektywności ekonomicznej układów kogeneracyjnych z generatorem gazu procesowego GazEla , 2012 .
[12] Kyriakos D. Panopoulos,et al. Integrated CHP with autothermal biomass gasification and SOFC–MGT , 2008 .
[13] Paulina Pianko-Oprych,et al. Przegląd metod modelowania numerycznego mikrorurowych stałotlenkowych stosów ogniw paliwowych , 2012 .
[14] Jarosław Milewski,et al. Mathematical Model of SOFC (Solid Oxide Fuel Cell) for Power Plant Simulations , 2004 .
[15] Jarosław Milewski,et al. Reducing CO2 Emissions From a Coal Fired Power Plant by Using a Molten Carbonate Fuel Cell , 2008 .
[16] Atsushi Tsutsumi,et al. Advanced integrated gasification combined cycle (A-IGCC) by exergy recuperation-Technical challenges for future generations , 2012 .
[17] Atsushi Tsutsumi,et al. Analysis of IGFC With Exergy Recuperation and Carbon Dioxide Separation Unit , 2012 .
[18] Nigel P. Brandon,et al. Methanol as a direct fuel in intermediate temperature (500–600∘C) solid oxide fuel cells with copper based anodes , 2005 .
[19] Suresh G. Advani,et al. Design and characterization of an electronically controlled variable flow rate ejector for fuel cell applications , 2012 .
[20] Suttichai Assabumrungrat,et al. Thermodynamic analysis of carbon formation in a solid oxide fuel cell with a direct internal reformer fuelled by methanol , 2005 .
[21] G. Cinti,et al. Carbon capture with molten carbonate fuel cells: Experimental tests and fuel cell performance assessment , 2012 .
[22] Hesamoddin Marzooghi,et al. Dynamic modeling of solid oxide fuel cell stack based on local linear model tree algorithm , 2012 .
[23] Amornchai Arpornwichanop,et al. Neural network hybrid model of a direct internal reforming solid oxide fuel cell , 2012 .
[24] Petronilla Fragiacomo,et al. Electrical and electrical–thermal power plants with molten carbonate fuel cell/gas turbine‐integrated systems , 2012 .
[25] Petronilla Fragiacomo,et al. A methodology for improving the performance of molten carbonate fuel cell/gas turbine hybrid systems , 2012 .