Dynamics and control of air turbines in oscillating-water-column wave energy converters: Analyses and case study

Abstract The paper presents a detailed analysis of the dynamics and control of air turbines and electrical generators in oscillating-water-columns (OWCs). The aim is to explain the performance of an OWC device based on the physical behaviour of each system component. The Mutriku wave power plant was chosen as the test case. The power plant is a breakwater located in the Bay of Biscay, in Basque Country, Spain. The contributions of the work are: i) development of a hydrodynamic model of the power plant in the frequency domain; ii) implementation of a non-linear time-domain wave-to-wire model; iii) real-valued implementation of the Prony method for the computation of the wave-radiation force; iv) a detailed generator model based on experimental data to assess the influence of the generator efficiency on the power take-off performance; v) a critical performance comparison of the Wells and biradial turbines; vi) a sensitivity analysis of the control parameters of the turbine/generator set; and vii) an explanation of the comparative performance of both turbines based on statistical data. The turbine performance curves were taken from developers’ published experimental data. The results were obtained with a simplified model of the wave climate off the Mutriku test site comprising 14 sea states.

[1]  Wanan Sheng,et al.  A new method for radiation forces for floating platforms in waves , 2015 .

[2]  Shantha Gamini Jayasinghe,et al.  A model predictive control-based power converter system for oscillating water column wave energy converters , 2017 .

[4]  T. Heath,et al.  A review of oscillating water columns , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[5]  Jon Andreu,et al.  Review of wave energy technologies and the necessary power-equipment , 2013 .

[6]  R.P.F. Gomes,et al.  Air Turbine and Primary Converter Matching in Spar-Buoy Oscillating Water Column Wave Energy Device , 2013 .

[7]  A. Falcão Control of an oscillating-water-column wave power plant for maximum energy production , 2002 .

[8]  Nicola Delmonte,et al.  Oscillating water column power conversion: A technology review , 2014, 2014 IEEE Energy Conversion Congress and Exposition (ECCE).

[9]  A. Anctil,et al.  Factors impacting diverging paths of renewable energy: A review , 2018 .

[10]  Torgeir Moan,et al.  Experimental and numerical investigation of non-predictive phase-control strategies for a point-absorbing wave energy converter , 2009 .

[11]  W. Cummins THE IMPULSE RESPONSE FUNCTION AND SHIP MOTIONS , 2010 .

[12]  Izaskun Garrido Hernandez,et al.  Neural rotational speed control for wave energy converters , 2011, Int. J. Control.

[13]  Johannes Falnes,et al.  Optimum operation of improved wave-power converter , 1977 .

[14]  A.J.N.A. Sarmento,et al.  Model-Test Optimization Of An Owc Wave Power Plant , 1993 .

[15]  Paulo Alexandre Justino,et al.  Rotational Speed Control of an OWC Wave Power Plant , 1999 .

[16]  Pedro Rodriguez,et al.  Adaptive Vector Control of Wave Energy Converters , 2017, IEEE Transactions on Industry Applications.

[17]  Chang-Kyu Rheem,et al.  Wave energy device and breakwater integration: A review , 2017 .

[18]  Jin Bae Park,et al.  Control Strategy of an Impulse Turbine for an Oscillating Water Column-Wave Energy Converter in Time-Domain Using Lyapunov Stability Method , 2016 .

[19]  A. Clément,et al.  Optimal Latching Control of a Wave Energy Device in Regular and Irregular Waves , 2006 .

[20]  Aggelos S. Dimakopoulos,et al.  Conjectures on the Failure of the OWC Breakwater at Mutriku , 2017 .

[21]  Luís M.C. Gato,et al.  A novel radial self-rectifying air turbine for use in wave energy converters , 2013 .

[22]  John Ringwood,et al.  A Review of Wave-to-Wire Models for Wave Energy Converters , 2016 .

[23]  Y. Torre-Enciso,et al.  Mutriku Wave Power Plant : from the thinking out to the reality , 2009 .

[24]  João C.C. Henriques,et al.  Numerical Simulation of Control Strategies at Mutriku Wave Power Plant , 2018 .

[25]  W. E. Cummins,et al.  The Impulse Response Function and Ship Motion , 1962 .

[26]  A. Clément,et al.  Wave energy in Europe: current status and perspectives , 2002 .

[27]  João C.C. Henriques,et al.  Self-rectifying air turbines for wave energy conversion: A comparative analysis , 2018, Renewable and Sustainable Energy Reviews.

[28]  Torgeir Moan,et al.  Hybrid frequency-time domain models for dynamic response analysis of marine structures , 2008 .

[29]  Johannes Falnes,et al.  Optimum Control of Oscillation of Wave-Energy Converters , 2002 .

[30]  Wanan Sheng,et al.  Power Takeoff Optimization to Maximize Wave Energy Conversions for Oscillating Water Column Devices , 2018, IEEE Journal of Oceanic Engineering.

[31]  Elisabetta Tedeschi,et al.  Effect of the generator sizing on a wave energy converter considering different control strategies , 2012 .

[32]  R.P.F. Gomes,et al.  On the annual wave energy absorption by two-body heaving WECs with latching control , 2012 .

[33]  Aitor J. Garrido,et al.  Stalling-Free Control Strategies for Oscillating-Water-Column-Based Wave Power Generation Plants , 2018, IEEE Transactions on Energy Conversion.

[34]  João C.C. Henriques,et al.  Latching control of a floating oscillating-water-column wave energy converter , 2016 .

[35]  António F.O. Falcão,et al.  Wave energy utilization: A review of the technologies , 2010 .

[36]  Aitor J. Garrido,et al.  Performance of an Ocean Energy Conversion System with DFIG Sensorless Control , 2013 .

[37]  João C.C. Henriques,et al.  Oscillating-water-column wave energy converters and air turbines: A review , 2016 .

[38]  A.F.O. Falcão,et al.  8.05 – Air Turbines , 2012 .

[39]  José J. Cândido,et al.  Modelling, control and Pontryagin Maximum Principle for a two-body wave energy device , 2011 .

[40]  J. Falnes Ocean Waves and Oscillating Systems , 2002 .

[41]  Nand Kishor,et al.  Maximizing Output Power in Oscillating Water Column Wave Power Plants: An Optimization Based MPPT Algorithm , 2018 .

[42]  S. Raghunathan,et al.  The wells air turbine for wave energy conversion , 1995 .

[43]  S. L. Dixon,et al.  Fluid mechanics, thermodynamics of turbomachinery , 1966 .

[44]  Manabu Takao,et al.  Current status of self rectifying air turbines for wave energy conversion , 2006 .

[45]  Luís M.C. Gato,et al.  A novel radial self-rectifying air turbine for use in wave energy converters. Part 2. Results from model testing , 2013 .

[46]  John V. Ringwood,et al.  Energy-Maximizing Control of Wave-Energy Converters: The Development of Control System Technology to Optimize Their Operation , 2014, IEEE Control Systems.

[47]  Umesh A. Korde,et al.  Hydrodynamic Control of Wave Energy Devices , 2016 .

[48]  Wanan Sheng,et al.  Assessment of primary energy conversions of oscillating water columns. I. Hydrodynamic analysis , 2014 .

[49]  Alain H. Clément,et al.  Absorption of outgoing waves in a numerical wave tank using a self-adaptive boundary condition , 2000 .

[50]  J. C. C. Henriques,et al.  Use of a residual distribution Euler solver to study the occurrence of transonic flow in Wells turbine rotor blades , 2002 .

[51]  Matthew Folley,et al.  Air turbine design for OWCs , 2008 .

[52]  John V. Ringwood,et al.  Improving the Computational Performance of Nonlinear Pseudospectral Control of Wave Energy Converters , 2018, IEEE Transactions on Sustainable Energy.

[53]  R.P.F. Gomes,et al.  Testing and control of a power take-off system for an oscillating-water-column wave energy converter , 2016 .

[54]  R.P.F. Gomes,et al.  Peak-power control of a grid-integrated oscillating water column wave energy converter , 2016 .

[55]  R.P.F. Gomes,et al.  Latching Control of an OWC Spar-Buoy Wave Energy Converter in Regular Waves , 2012 .

[56]  Luís Eça,et al.  A high-order Discontinuous Galerkin Method with mesh refinement for optimal control , 2017, Autom..

[57]  Erik Dick Fundamentals of Turbomachines , 2015 .

[58]  Wanan Sheng,et al.  Power Takeoff Optimization for Maximizing Energy Conversion of Wave-Activated Bodies , 2016, IEEE Journal of Oceanic Engineering.