Enhancers predominantly regulate gene expression in vivo via transcription initiation

Gene transcription occurs via a cycle of linked events including initiation, promoter proximal pausing and elongation of RNA polymerase II (Pol II). A key question is how do transcriptional enhancers influence these events to control gene expression? Here we have used a new approach to quantify transcriptional initiation and pausing in vivo, while simultaneously identifying transcription start sites (TSSs) and pause-sites (TPSs) from single RNA molecules. When analyzed in parallel with nascent RNA-seq, these data show that differential gene expression is achieved predominantly via changes in transcription initiation rather than Pol II pausing. Using genetically engineered mouse models deleted for specific enhancers we show that these elements control gene expression via Pol II recruitment and/or initiation rather than via promoter proximal pause release. Together, our data show that enhancers, in general, control gene expression predominantly by Pol II recruitment and initiation rather than via pausing.

[1]  S. Mirarab,et al.  Sequence Analysis , 2020, Encyclopedia of Bioinformatics and Computational Biology.

[2]  P. Cramer Organization and regulation of gene transcription , 2019, Nature.

[3]  P. Cramer,et al.  The pause-initiation limit restricts transcription activation in human cells , 2019, Nature Communications.

[4]  Erin M. Wissink,et al.  Nascent RNA analyses: tracking transcription and its regulation , 2019, Nature Reviews Genetics.

[5]  A. Pertsinidis,et al.  Single-Molecule Nanoscopy Elucidates RNA Polymerase II Transcription at Single Genes in Live Cells , 2019, Cell.

[6]  Leighton J. Core,et al.  Promoter-proximal pausing of RNA polymerase II: a nexus of gene regulation , 2019, Genes & development.

[7]  N. Proudfoot,et al.  Transcriptional Control by Premature Termination: A Forgotten Mechanism , 2019, Trends in genetics : TIG.

[8]  V. Corces,et al.  Organizational principles of 3D genome architecture , 2018, Nature Reviews Genetics.

[9]  Simona Bianco,et al.  Single-allele chromatin interactions identify regulatory hubs in dynamic compartmentalized domains , 2018, Nature Genetics.

[10]  Michael A. Cortazar,et al.  Dynamic turnover of paused Pol II complexes at human promoters , 2018, Genes & development.

[11]  Leighton J. Core,et al.  Chromatin run-on and sequencing maps the transcriptional regulatory landscape of glioblastoma multiforme , 2018, Nature Genetics.

[12]  J. Lis,et al.  Single-molecule nascent RNA sequencing reveals regulatory domain architecture at promoters and enhancers , 2018, Nature Genetics.

[13]  P. Cramer,et al.  RNA polymerase II clustering through carboxy-terminal domain phase separation , 2018, Nature Structural & Molecular Biology.

[14]  Charles H. Li,et al.  Mediator and RNA polymerase II clusters associate in transcription-dependent condensates , 2018, Science.

[15]  Daniel S. Day,et al.  Coactivator condensation at super-enhancers links phase separation and gene control , 2018, Science.

[16]  Erik Sundström,et al.  RNA velocity of single cells , 2018, Nature.

[17]  Vanja Haberle,et al.  Eukaryotic core promoters and the functional basis of transcription initiation , 2018, Nature Reviews Molecular Cell Biology.

[18]  X. Darzacq,et al.  Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II , 2018, Nature.

[19]  A. Shilatifard,et al.  Born to run: control of transcription elongation by RNA polymerase II , 2018, Nature Reviews Molecular Cell Biology.

[20]  M. Rosenfeld,et al.  JMJD6 Licenses ERα-Dependent Enhancer and Coding Gene Activation by Modulating the Recruitment of the CARM1/MED12 Co-activator Complex. , 2018, Molecular cell.

[21]  W. V. van Cappellen,et al.  Live-cell analysis of endogenous GFP-RPB1 uncovers rapid turnover of initiating and promoter-paused RNA Polymerase II , 2018, Proceedings of the National Academy of Sciences.

[22]  Zenab F Mchaourab,et al.  ChIP-seq and ChIP-exo profiling of Pol II, H2A.Z, and H3K4me3 in human K562 cells , 2018, Scientific Data.

[23]  P. Cramer,et al.  CDK9-dependent RNA polymerase II pausing controls transcription initiation , 2017, eLife.

[24]  Michael Q. Zhang,et al.  PAF1 regulation of promoter-proximal pause release via enhancer activation , 2017, Science.

[25]  Lukas Burger,et al.  Genome-wide Single-Molecule Footprinting Reveals High RNA Polymerase II Turnover at Paused Promoters , 2017, Molecular cell.

[26]  Long Vo Ngoc,et al.  The punctilious RNA polymerase II core promoter , 2017, Genes & development.

[27]  Sarah A. Boswell,et al.  Total RNA-seq to identify pharmacological effects on specific stages of mRNA synthesis. , 2017, Nature chemical biology.

[28]  R. Young,et al.  A Phase Separation Model for Transcriptional Control , 2017, Cell.

[29]  David S. Lorberbaum,et al.  Genetic evidence that Nkx2.2 acts primarily downstream of Neurog3 in pancreatic endocrine lineage development , 2017, eLife.

[30]  Bin Xiong,et al.  Insights into Nucleosome Organization in Mouse Embryonic Stem Cells through Chemical Mapping , 2016, Cell.

[31]  L. Pennacchio,et al.  Genetic dissection of the α-globin super-enhancer in vivo , 2016, Nature Genetics.

[32]  Peter J. Park,et al.  MNase titration reveals differences between nucleosome occupancy and chromatin accessibility , 2016, Nature Communications.

[33]  Bryan J Venters,et al.  Genomic Organization of Human Transcription Initiation Complexes , 2016, PloS one.

[34]  Jesse J. Lipp,et al.  P-TEFb regulation of transcription termination factor Xrn2 revealed by a chemical genetic screen for Cdk9 substrates , 2016, Genes & development.

[35]  J. Telenius,et al.  Multiplexed analysis of chromosome conformation at vastly improved sensitivity , 2015, Nature Methods.

[36]  A. Raj,et al.  Dynamic enhancer–gene body contacts during transcription elongation , 2015, Genes & development.

[37]  S. Jacobsen,et al.  Nucleosome Organization in Human Embryonic Stem Cells , 2015, PloS one.

[38]  D. Price,et al.  THZ1 Reveals Roles for Cdk7 in Co-transcriptional Capping and Pausing. , 2015, Molecular cell.

[39]  H. Kimura,et al.  Mammalian NET-Seq Reveals Genome-wide Nascent Transcription Coupled to RNA Processing , 2015, Cell.

[40]  S. Jimeno-González,et al.  A positioned +1 nucleosome enhances promoter-proximal pausing , 2015, Nucleic acids research.

[41]  Patrick Cramer,et al.  Structural basis of transcription initiation by RNA polymerase II , 2015, Nature Reviews Molecular Cell Biology.

[42]  John T. Lis,et al.  Getting up to speed with transcription elongation by RNA polymerase II , 2015, Nature Reviews Molecular Cell Biology.

[43]  C. Glass,et al.  The selection and function of cell type-specific enhancers , 2015, Nature Reviews Molecular Cell Biology.

[44]  André L. Martins,et al.  Analysis of nascent RNA identifies a unified architecture of initiation regions at mammalian promoters and enhancers , 2014, Nature Genetics.

[45]  Tae-Kyung Kim,et al.  Enhancer RNA facilitates NELF release from immediate early genes. , 2014, Molecular cell.

[46]  D. Vernimmen,et al.  Uncovering Enhancer Functions Using the α-Globin Locus , 2014, PLoS genetics.

[47]  Wolfgang Huber,et al.  Enhancer loops appear stable during development and are associated with paused polymerase , 2014, Nature.

[48]  Kathleen Marchal,et al.  A network-based approach to identify substrate classes of bacterial glycosyltransferases , 2014, BMC Genomics.

[49]  J. Lis,et al.  Genome-wide dynamics of Pol II elongation and its interplay with promoter proximal pausing, chromatin, and exons , 2014, eLife.

[50]  Eric Nestler,et al.  ngs.plot: Quick mining and visualization of next-generation sequencing data by integrating genomic databases , 2014, BMC Genomics.

[51]  A. Stark,et al.  Transcriptional enhancers: from properties to genome-wide predictions , 2014, Nature Reviews Genetics.

[52]  Christopher M. Weber,et al.  Nucleosomes are context-specific, H2A.Z-modulated barriers to RNA polymerase. , 2014, Molecular cell.

[53]  M. Rosenfeld,et al.  Brd4 and JMJD6-Associated Anti-Pause Enhancers in Regulation of Transcriptional Pause Release , 2013, Cell.

[54]  D. Fargo,et al.  Stable pausing by RNA polymerase II provides an opportunity to target and integrate regulatory signals. , 2013, Molecular cell.

[55]  Howard Y. Chang,et al.  Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position , 2013, Nature Methods.

[56]  J. Svejstrup,et al.  Mechanistic Interpretation of Promoter-Proximal Peaks and RNAPII Density Maps , 2013, Cell.

[57]  M. Dahan,et al.  Real-Time Dynamics of RNA Polymerase II Clustering in Live Human Cells , 2013, Science.

[58]  Wei Shi,et al.  featureCounts: an efficient general purpose program for assigning sequence reads to genomic features , 2013, Bioinform..

[59]  G. Bejerano,et al.  Enhancers: five essential questions , 2013, Nature Reviews Genetics.

[60]  Leighton J. Core,et al.  Precise Maps of RNA Polymerase Reveal How Promoters Direct Initiation and Pausing , 2013, Science.

[61]  John T. Lis,et al.  Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans , 2012, Nature Reviews Genetics.

[62]  Jayasha Shandilya,et al.  The transcription cycle in eukaryotes: from productive initiation to RNA polymerase II recycling. , 2012, Biochimica et biophysica acta.

[63]  M. Groudine,et al.  The hypersensitive sites of the murine β-globin locus control region act independently to affect nuclear localization and transcriptional elongation. , 2012, Blood.

[64]  B. Pugh,et al.  Genome-wide structure and organization of eukaryotic pre-initiation complexes , 2011, Nature.

[65]  B. Pugh,et al.  Comprehensive Genome-wide Protein-DNA Interactions Detected at Single-Nucleotide Resolution , 2011, Cell.

[66]  Tanja Magoc,et al.  FLASH: fast length adjustment of short reads to improve genome assemblies , 2011, Bioinform..

[67]  Giovanni Parmigiani,et al.  Integrating diverse genomic data using gene sets , 2011, Genome Biology.

[68]  O. Bensaude,et al.  Inhibiting eukaryotic transcription. Which compound to choose? How to evaluate its activity? , 2011, Transcription.

[69]  C. Glass,et al.  Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. , 2010, Molecular cell.

[70]  Christopher B. Burge,et al.  c-Myc Regulates Transcriptional Pause Release , 2010, Cell.

[71]  W. Schlegel,et al.  Promoter-proximal pausing of RNA polymerase II: an opportunity to regulate gene transcription , 2010, Journal of receptor and signal transduction research.

[72]  D. Fargo,et al.  Global Analysis of Short RNAs Reveals Widespread Promoter-Proximal Stalling and Arrest of Pol II in Drosophila , 2010, Science.

[73]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[74]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[75]  Leighton J. Core,et al.  Nascent RNA Sequencing Reveals Widespread Pausing and Divergent Initiation at Human Promoters , 2008, Science.

[76]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[77]  Manolis Kellis,et al.  RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo , 2007, Nature Genetics.

[78]  Ruchir Shah,et al.  RNA polymerase is poised for activation across the genome , 2007, Nature Genetics.

[79]  D. Higgs,et al.  Long‐range chromosomal interactions regulate the timing of the transition between poised and active gene expression , 2007 .

[80]  Leah Barrera,et al.  A high-resolution map of active promoters in the human genome , 2005, Nature.

[81]  Jessica Halow,et al.  The beta -globin locus control region (LCR) functions primarily by enhancing the transition from transcription initiation to elongation. , 2003, Genes & development.

[82]  Tom H. Pringle,et al.  The human genome browser at UCSC. , 2002, Genome research.

[83]  H. Handa,et al.  Structure and Function of the Human Transcription Elongation Factor DSIF* , 1999, The Journal of Biological Chemistry.

[84]  K. Yano,et al.  DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs. , 1998, Genes & development.

[85]  M. Ptashne,et al.  Transcriptional activation by recruitment , 1997, Nature.

[86]  D. Price,et al.  Purification of P-TEFb, a Transcription Factor Required for the Transition into Productive Elongation (*) , 1995, The Journal of Biological Chemistry.

[87]  P. Sharp,et al.  Five intermediate complexes in transcription initiation by RNA polymerase II , 1989, Cell.

[88]  P. Chambon,et al.  Clustering of RNA polymerase B molecules in the 5' moiety of the adult beta-globin gene of hen erythrocytes. , 1981, Nucleic acids research.

[89]  J. Darnell,et al.  DRB-induced premature termination of late adenovirus transcription , 1978, Nature.

[90]  K. McGrath,et al.  Delineating stages of erythropoiesis using imaging flow cytometry. , 2017, Methods.

[91]  A. Shaytan,et al.  Nucleosomal Barrier to Transcription: Structural Determinants and Changes in Chromatin Structure. , 2016, Biochemistry & molecular biology journal.

[92]  B. Hallberg,et al.  c-Kit--a hematopoietic cell essential receptor tyrosine kinase. , 2007, The international journal of biochemistry & cell biology.

[93]  C. Lottaz,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2001 .

[94]  Chengshan Xiao Improved -Sensitivity for , 1997 .