Segmentation of the mandibular canal in cone-beam CT data

Accurate information about the location of the mandibular canal is essential in case of dental implant surgery. The goal of our research is to find an automatic method which can segment the mandibular canal in Cone-beam CT (CBCT). Mandibular canal segmentation methods in literature using a priori shape information are, the 2D active appearance model of Rueda et al., and 3D active shape model (ASM) of Kainmueller et al. The mean distance to manual annotation of the mandibular canal of the method of Kainmueller is around 1.1mm. The best method in literature is Kim et al. with an average distance of 0.7mm. We develop and evaluate five methods for mandibular canal localization. The methods, Lukas Kanade tracking (LK), B-spline registration, demon registration, 3D active shape model (ASM), and active appearance model (AAM). The ASM and AAM need corresponding points between the mandibles in the training data. We develop and evaluate two methods to find corresponding points, minimum description length (MDL) and the second shape context (SC) based registration. To improve the quality of the CBCT scans we introduce a rotational invariant edge preserving optimized anisotropic diffusion filter. We evaluate the performance on 13 CBCT scans. The registration methods have an average distance to expert annotation of the canal of more than 4mm, LK tracking a distance of 3mm, AAM and ASM a distance of respectively 2.0mm and 2.3mm. The MDL method does not improve point correspondences found by the SC method, and the pre-filtering with the introduced diffusion filter does not improve the ASM result. By using location based intensity weights we improve the AAM results, to an average distance of 1.88mm. The relatively large error is due to a low number of training datasets, and low CBCT scan quality.

[1]  A. Kucernak,et al.  The Voltammetric Response of Nanometer-Sized Carbon Electrodes , 2002 .

[2]  Takahiro Ishikawa,et al.  The template update problem , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Noam Eliaz,et al.  Applications of electrochemistry and nanotechnology in biology and medicine I , 2011 .

[4]  Chongmok Lee,et al.  Application of scanning electrochemical microscopy to generation/collection experiments with high collection efficiency , 1991 .

[5]  O. Guenat,et al.  Addressable Microelectrode Arrays: Characterization by Imaging with Scanning Electrochemical Microscopy , 2004 .

[6]  David Schreiber,et al.  Robust template tracking with drift correction , 2007, Pattern Recognit. Lett..

[7]  Jerry L. Prince,et al.  A Survey of Current Methods in Medical Image Segmentation , 1999 .

[8]  R Klingebiel,et al.  320-slice CT neuroimaging: initial clinical experience and image quality evaluation. , 2009, The British journal of radiology.

[9]  Zbigniew Stojek,et al.  Generalized theory of steady-state voltammetry without a supporting electrolyte. Effect of product and substrate diffusion coefficient diversity. , 2002, Analytical chemistry.

[10]  D. Shanno Conditioning of Quasi-Newton Methods for Function Minimization , 1970 .

[11]  J. Nocedal Updating Quasi-Newton Matrices With Limited Storage , 1980 .

[12]  M Wakoh,et al.  Digital imaging modalities for dental practice. , 2001, The Bulletin of Tokyo Dental College.

[13]  H. Lameckera,et al.  Automatic Segmentation of Mandibles in Low-Dose CT-Data , 2006 .

[14]  Jon Louis Bentley,et al.  An Algorithm for Finding Best Matches in Logarithmic Expected Time , 1977, TOMS.

[15]  Max A. Viergever,et al.  Noise Reduction in Computed Tomography Scans Using 3-D Anisotropic Hybrid Diffusion With Continuous Switch , 2009, IEEE Transactions on Medical Imaging.

[16]  P Sukovic,et al.  Cone beam computed tomography in craniofacial imaging. , 2003, Orthodontics & craniofacial research.

[17]  R. Thewes,et al.  A fully electronic DNA sensor with 128 positions and in-pixel A/D conversion , 2004, IEEE Journal of Solid-State Circuits.

[18]  Christopher J. Taylor,et al.  A Method of Automated Landmark Generation for Automated 3D PDM Construction , 2000, BMVC.

[19]  N. Drage,et al.  Effective dose from cone beam CT examinations in dentistry. , 2009, The British journal of radiology.

[20]  Stefan Zachow,et al.  Automatic Extraction of Mandibular Nerve and Bone from Cone-Beam CT Data , 2009, MICCAI.

[21]  M. Kuo,et al.  C-arm cone-beam CT: general principles and technical considerations for use in interventional radiology. , 2009, Journal of vascular and interventional radiology : JVIR.

[22]  Suyash P. Awate,et al.  Unsupervised, information-theoretic, adaptive image filtering for image restoration , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Max A. Viergever,et al.  Mutual-information-based registration of medical images: a survey , 2003, IEEE Transactions on Medical Imaging.

[24]  D. Hill,et al.  Non-rigid image registration: theory and practice. , 2004, The British journal of radiology.

[25]  Yeong-Gil Shin,et al.  Automatic Extraction of Inferior Alveolar Nerve Canal Using Feature-Enhancing Panoramic Volume Rendering , 2011, IEEE Transactions on Biomedical Engineering.

[26]  Timothy F. Cootes,et al.  Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..

[27]  Aly A. Farag,et al.  Bias field estimation and adaptive segmentation of MRI data using a modified fuzzy C-means algorithm , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[28]  Hanno Scharr,et al.  A Scheme for Coherence-Enhancing Diffusion Filtering with Optimized Rotation Invariance , 2002, J. Vis. Commun. Image Represent..

[29]  Aly A. Farag,et al.  MultiStencils Fast Marching Methods: A Highly Accurate Solution to the Eikonal Equation on Cartesian Domains , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Mariano Alcañiz Raya,et al.  Automatic Segmentation of Jaw Tissues in CT Using Active Appearance Models and Semi-automatic Landmarking , 2006, MICCAI.

[31]  Alan C. Evans,et al.  BrainWeb: Online Interface to a 3D MRI Simulated Brain Database , 1997 .

[32]  J Martin Palomo,et al.  Applications of cone beam computed tomography in the practice of oral and maxillofacial surgery. , 2008, Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons.

[33]  Marcel Körtgen,et al.  3D Shape Matching with 3D Shape Contexts , 2003 .

[34]  W. Heineman,et al.  Small-volume voltammetric detection of 4-aminophenol with interdigitated array electrodes and its application to electrochemical enzyme immunoassay. , 1993, Analytical chemistry.

[35]  Diana Wald,et al.  An Automatic Segmentation and Reconstruction of Mandibular Structures from CT-Data , 2009, IDEAL.

[36]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[37]  Jitendra Malik,et al.  Shape matching and object recognition using shape contexts , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[38]  B J Glass,et al.  Bifid mandibular canals in panoramic radiographs. , 1985, Journal of the American Dental Association.

[39]  P. Unwin,et al.  Scanning electrochemical microscopy: theory and experiment for the positive feedback mode with unequal diffusion coefficients of the redox mediator couple , 1997 .

[40]  Josef Stoer,et al.  Numerische Mathematik 1 , 1989 .

[41]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[42]  Marc Steichen,et al.  On the adsorption of hexaammineruthenium (III) at anionic self-assembled monolayers , 2008 .

[43]  H. White,et al.  Ion-pairing kinetics investigated using nanometer-size Pt electrodes , 2005 .

[44]  P. Unwin,et al.  Scanning electrochemical microscopy Kinetics of chemical reactions following electron-transfer measured with the substrate-generation–tip-collection mode , 1998 .

[45]  Michael Felsberg On the Relation between Anisotropic Diffusion and Iterated Adaptive Filtering , 2008, DAGM-Symposium.

[46]  Jan Flusser,et al.  Image registration methods: a survey , 2003, Image Vis. Comput..

[47]  Jean-Philippe Thirion,et al.  Image matching as a diffusion process: an analogy with Maxwell's demons , 1998, Medical Image Anal..

[48]  C. Iacobellis,et al.  CT evaluation of regenerated osseous segments following bone transport , 2004, Journal of Orthopaedics and Traumatology.

[49]  E. Ariji,et al.  Comparison between cone-beam and multislice computed tomography depicting mandibular neurovascular canal structures. , 2010, Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics.

[50]  Boris Hofmann,et al.  Nanocavity redox cycling sensors for the detection of dopamine fluctuations in microfluidic gradients. , 2010, Analytical chemistry.

[51]  Stephen E. Creager,et al.  Redox and ion-pairing thermodynamics in self-assembled monolayers , 1991 .

[52]  Torsten Rohlfing,et al.  Volume-preserving nonrigid registration of MR breast images using free-form deformation with an incompressibility constraint , 2003, IEEE Transactions on Medical Imaging.

[53]  A. Bard,et al.  Chemical Imaging of Surfaces with the Scanning Electrochemical Microscope , 1991, Science.

[54]  Erwin Keeve,et al.  Nerves - level sets for interactive 3D segmentation of nerve channels , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[55]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[56]  Munetaka Naitoh,et al.  Observation of bifid mandibular canal using cone-beam computerized tomography. , 2009, The International journal of oral & maxillofacial implants.

[57]  Reinhilde Jacobs,et al.  A comparative evaluation of Cone Beam Computed Tomography (CBCT) and Multi-Slice CT (MSCT) Part I. On subjective image quality. , 2010, European journal of radiology.

[58]  Calvin R. Maurer,et al.  A Linear Time Algorithm for Computing Exact Euclidean Distance Transforms of Binary Images in Arbitrary Dimensions , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[59]  R. Mark Wightman,et al.  Spatiotemporal description of the diffusion layer with a microelectrode probe , 1987 .

[60]  Cornelis H. Slump,et al.  Multimodal image registration by edge attraction and regularization using a B-spline grid , 2011, Medical Imaging.

[61]  Zbigniew Stojek,et al.  General theory for migrational voltammetry. Strong influence of diversity in redox species diffusivities on charge reversal electrode processes. , 2005, Analytical chemistry.

[62]  Jerry L. Prince,et al.  Gradient vector flow: a new external force for snakes , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[63]  H. Hricak,et al.  Semi‐automatic deformable registration of prostate MR images to pathological slices , 2010, Journal of Magnetic Resonance Imaging.

[64]  Héctor D. Abruña,et al.  Electron-transfer study and solvent effects on the formal potential of a redox-active self-assembling monolayer , 1991 .

[65]  Nicholas Ayache,et al.  Non-parametric Diffeomorphic Image Registration with the Demons Algorithm , 2007, MICCAI.

[66]  K. B. Oldham,et al.  Effect of diffusion coefficient diversity on steady-state voltammetry when homogeneous equilibria and migration are encountered. , 1996, Analytical chemistry.

[67]  Daniel Rueckert,et al.  Nonrigid registration using free-form deformations: application to breast MR images , 1999, IEEE Transactions on Medical Imaging.

[68]  Irina Svir,et al.  Simple and clear evidence for positive feedback limitation by bipolar behavior during scanning electrochemical microscopy of unbiased conductors. , 2011, Analytical chemistry.

[69]  James B. Elder THIEME Atlas of Anatomy Series , 2007 .

[70]  Hans Henrik Thodberg,et al.  Minimum Description Length Shape and Appearance Models , 2003, IPMI.

[71]  Timothy F. Cootes,et al.  Active Appearance Models , 1998, ECCV.

[72]  N. Ayache,et al.  Fast Non Rigid Matching by Gradient Descent: Study and Improvements of the "Demons" Algorithm , 1999 .

[73]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[74]  P. Robinson,et al.  Observations on the recovery of sensation following inferior alveolar nerve injuries. , 1988, The British journal of oral & maxillofacial surgery.

[75]  Jürgen Weese,et al.  A comparison of similarity measures for use in 2-D-3-D medical image registration , 1998, IEEE Transactions on Medical Imaging.

[76]  T. Coleman,et al.  On the Convergence of Reflective Newton Methods for Large-scale Nonlinear Minimization Subject to Bounds , 1992 .

[77]  H. K. Abhyankar,et al.  Image Registration Techniques: An overview , 2009 .

[78]  Daniel Rueckert,et al.  Diffeomorphic Registration Using B-Splines , 2006, MICCAI.

[79]  R Jacobs,et al.  Comparison between effective radiation dose of CBCT and MSCT scanners for dentomaxillofacial applications. , 2009, European journal of radiology.

[80]  Guido Gerig,et al.  Parametrization of Closed Surfaces for 3-D Shape Description , 1995, Comput. Vis. Image Underst..

[81]  L. Feldkamp,et al.  Practical cone-beam algorithm , 1984 .

[82]  Timothy F. Cootes,et al.  3D Statistical Shape Models Using Direct Optimisation of Description Length , 2002, ECCV.

[83]  Sung Yong Shin,et al.  Scattered Data Interpolation with Multilevel B-Splines , 1997, IEEE Trans. Vis. Comput. Graph..

[84]  G. Niaura,et al.  Anion effect on mediated electron transfer through ferrocene-terminated self-assembled monolayers. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[85]  Carol Davila,et al.  a morpholoGIcal STuDy of The manDIBular canal In parTIally eDenTulouS paTIenTS , 2010 .

[86]  Kostas Tsiklakis,et al.  Dose reduction in maxillofacial imaging using low dose Cone Beam CT. , 2005, European journal of radiology.

[87]  Cornelis H. Slump,et al.  Optimized Anisotropic Rotational Invariant Diffusion Scheme on Cone-Beam CT , 2010, MICCAI.

[88]  Simon Baker,et al.  Lucas-Kanade 20 Years On: A Unifying Framework , 2004, International Journal of Computer Vision.

[89]  Marc Kachelrieß,et al.  Advanced single-slice rebinning in cone-beam spiral CT: theoretical considerations and medical applications , 2000, Image Processing.

[90]  Hans-Peter Meinzer,et al.  3D Active Shape Models Using Gradient Descent Optimization of Description Length , 2005, IPMI.

[91]  Hans-Peter Meinzer,et al.  Bildverarbeitung für die Medizin 2005 , 2005 .

[92]  Thomas F. Coleman,et al.  An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds , 1993, SIAM J. Optim..

[93]  D. Whittaker,et al.  Oral development and histology , 1988 .

[94]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using unit quaternions , 1987 .

[95]  David J. Hawkes,et al.  Validation of nonrigid image registration using finite-element methods: application to breast MR images , 2003, IEEE Transactions on Medical Imaging.

[96]  C. M. Goss,et al.  GARY??S ANATOMY OF THE HUMAN BODY: , 1967 .

[97]  Diego Krapf,et al.  Mesoscopic concentration fluctuations in a fluidic nanocavity detected by redox cycling. , 2007, Nano letters.

[98]  A. Bard,et al.  Scanning electrochemical microscopy. Introduction and principles , 1989 .

[99]  Cornelis H. Slump,et al.  COHERENCE FILTERING TO ENHANCE THE MANDIBULAR CANAL IN CONE-BEAM CT DATA , 2009, EMBC 2009.

[100]  Bjarne Kjær Ersbøll,et al.  Extending and Applying Active Appearance Models for Automated, High Precision Segmentation* , 2001 .

[101]  D. Pletcher,et al.  A microelectrode study of the mechanism and kinetics of the ferro/ferricyanide couple in aqueous media: The influence of the electrolyte and its concentration , 1993 .

[102]  D. Cliffel,et al.  Electrochemical sensors and biosensors. , 2012, Analytical chemistry.

[103]  Martin Styner,et al.  Evaluation of 3D Correspondence Methods for Model Building , 2003, IPMI.

[104]  Joe Y. Chang,et al.  Validation of an accelerated ‘demons’ algorithm for deformable image registration in radiation therapy , 2005, Physics in medicine and biology.

[105]  A. Bard,et al.  Scanning electrochemical microscopy. , 2001, Annual review of analytical chemistry.

[106]  Gintaras Juodzbalys,et al.  Anatomy of Mandibular Vital Structures. Part I: Mandibular Canal and Inferior Alveolar Neurovascular Bundle in Relation with Dental Implantology , 2010, Journal of oral & maxillofacial research.

[107]  D. J. Kroon,et al.  Image based hemodynamic modeling of cerebral aneurysms and the determination of the risk of rupture , 2006, SPIE Medical Imaging.

[108]  A. Evans,et al.  MRI simulation-based evaluation of image-processing and classification methods , 1999, IEEE Transactions on Medical Imaging.

[109]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[110]  H. Akhoondali,et al.  Fully Automatic Extraction of Panoramic Dental Images from CT-Scan Volumetric Data of the Head , 2009 .

[111]  Edgar D. Goluch,et al.  Hydrodynamic Voltammetry with Nanogap Electrodes , 2012 .

[112]  Douglas Allen Atwood,et al.  Postextraction changes in the adult mandible as illustrated by microradiographs of midsagittal sections and serial cephalometric roentgenograms , 1963 .

[113]  Morten Bro-Nielsen,et al.  Fast Fluid Registration of Medical Images , 1996, VBC.

[114]  A S Frangakis,et al.  Noise reduction in electron tomographic reconstructions using nonlinear anisotropic diffusion. , 2001, Journal of structural biology.

[115]  S. Sotthivirat,et al.  Automatic detection of inferior alveolar nerve canals on CT images , 2006, 2006 IEEE Biomedical Circuits and Systems Conference.

[116]  Cristian T. Badea,et al.  CONE BASED 3D RECONSTRUCTION: A FDK - SART COMPARISON FOR LIMITED NUMBER OF PROJECTIONS , 2001 .

[117]  J. Munkres ALGORITHMS FOR THE ASSIGNMENT AND TRANSIORTATION tROBLEMS* , 1957 .

[118]  Cornelis H. Slump,et al.  Multiple Sclerosis Detection in Multispectral Magnetic Resonance Images with Principal Components Analysis. , 2008, The MIDAS Journal.

[119]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[120]  J. Regalbuto,et al.  The synthesis of highly dispersed noble and base metals on silica via strong electrostatic adsorption: II. Mesoporous silica SBA-15 , 2008 .

[121]  M. Goldberg,et al.  Frequency of trigeminal nerve injuries following third molar removal. , 2005, Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons.

[122]  S Hassfeld,et al.  Tracing of thin tubular structures in computer tomographic data. , 1998, Computer aided surgery : official journal of the International Society for Computer Aided Surgery.

[123]  Gregory D. Hager,et al.  Efficient Region Tracking With Parametric Models of Geometry and Illumination , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[124]  L. J. Dario,et al.  Implant placement above a bifurcated mandibular canal: a case report. , 2002, Implant dentistry.

[125]  F. Javier Sánchez Castro,et al.  Validation of Experts versus Atlas-based and Automatic Registration Methods for Subthalamic Nucleus Targeting on MRI , 2006, International Journal of Computer Assisted Radiology and Surgery.

[126]  Sim Heng Ong,et al.  Computer-based extraction of the inferior alveolar nerve canal in 3-D space , 2004, Comput. Methods Programs Biomed..

[127]  Frits A Rangel,et al.  Reproducibility of 3 different tracing methods based on cone beam computed tomography in determining the anatomical position of the mandibular canal. , 2010, Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons.

[128]  Lawrence H. Staib,et al.  Shape-based 3D surface correspondence using geodesics and local geometry , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[129]  Thomas Ertl,et al.  Hierarchical Solutions for the Deformable Surface Problem in Visualization , 2000, Graph. Model..

[130]  J O Katz,et al.  Anisotropic elastic properties of cancellous bone from a human edentulous mandible. , 2000, Clinical oral implants research.

[131]  H. Yau,et al.  An Adaptive Region Growing Method to Segment Inferior Alveolar Nerve Canal from 3D Medical Images for Dental Implant Surgery , 2008 .

[132]  Johan Sunnegårdh,et al.  Iterative Filtered Backprojection Methods for Helical Cone-Beam CT , 2009 .

[133]  Christian Amatore,et al.  Diffusional Cross-Talk between Paired Microband Electrodes Operating within a Thin Film: Theory for Redox Couples with Unequal Diffusion Coefficients , 2002 .

[134]  Cornelis H. Slump,et al.  MRI modalitiy transformation in demon registration , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[135]  Seungyong Lee,et al.  Injectivity Conditions of 2D and 3D Uniform Cubic B-Spline Functions , 2000, Graph. Model..