In budding yeast, cAMP-dependent protein kinase (PKA) plays a central role in the nutritional control of metabolism, cell cycle, and transcription. This study shows that both the regulatory subunit Bcy1p and the catalytic subunit Tpk1p associated with it are predominantly localized in the nucleus of rapidly growing cells. Activation of nuclear PKA by cAMP leads to fast entry of a significant part of Tpk1p into the cytoplasm, while the regulatory subunit remains nuclear. In contrast to rapidly proliferating cells, both Bcy1p and Tpk1p are distributed over nucleus and cytoplasm in cells growing on a nonfermentable carbon source or in stationary phase cells. These results demonstrate that at least two different mechanisms determine the subcellular localization of PKA; cAMP controls the localization of Tpk1p, and the carbon source determines that of Bcy1p. The N-terminal domain of Bcy1p serves to target it properly during logarithmic and stationary phase. Studies with Bcy1p mutant versions unable to concentrate in the nucleus revealed that cells producing them are less viable in stationary phase than wild type cells, display delayed reproliferation following transfer to fresh growth medium, and, as diploids, exhibit reduced efficiency of sporulation.