Topological characterization of neuronal arbor morphology via sequence representation: II - global alignment

BackgroundThe increasing abundance of neuromorphological data provides both the opportunity and the challenge to compare massive numbers of neurons from a wide diversity of sources efficiently and effectively. We implemented a modified global alignment algorithm representing axonal and dendritic bifurcations as strings of characters. Sequence alignment quantifies neuronal similarity by identifying branch-level correspondences between trees.ResultsThe space generated from pairwise similarities is capable of classifying neuronal arbor types as well as, or better than, traditional topological metrics. Unsupervised cluster analysis produces groups that significantly correspond with known cell classes for axons, dendrites, and pyramidal apical dendrites. Furthermore, the distinguishing consensus topology generated by multiple sequence alignment of a group of neurons reveals their shared branching blueprint. Interestingly, the axons of dendritic-targeting interneurons in the rodent cortex associates with pyramidal axons but apart from the (more topologically symmetric) axons of perisomatic-targeting interneurons.ConclusionsGlobal pairwise and multiple sequence alignment of neurite topologies enables detailed comparison of neurites and identification of conserved topological features in alignment-defined clusters. The methods presented also provide a framework for incorporation of additional branch-level morphological features. Moreover, comparison of multiple alignment with motif analysis shows that the two techniques provide complementary information respectively revealing global and local features.

[1]  G. Ascoli,et al.  NeuroMorpho.Org: A Central Resource for Neuronal Morphologies , 2007, The Journal of Neuroscience.

[2]  D. Amaral,et al.  A quantitative analysis of the dendritic organization of pyramidal cells in the rat hippocampus , 1995, The Journal of comparative neurology.

[3]  Hermann Cuntz,et al.  A scaling law derived from optimal dendritic wiring , 2012, Proceedings of the National Academy of Sciences.

[4]  Andreas Knoblauch,et al.  Pattern separation and synchronization in spiking associative memories and visual areas , 2001, Neural Networks.

[5]  Chao Xie,et al.  Fast and sensitive protein alignment using DIAMOND , 2014, Nature Methods.

[6]  W. Cameron,et al.  Morphometric analysis of phrenic motoneurons in the cat during postnatal development , 1991, The Journal of comparative neurology.

[7]  Philip Bille,et al.  A survey on tree edit distance and related problems , 2005, Theor. Comput. Sci..

[8]  J. Kong,et al.  Diversity of ganglion cells in the mouse retina: Unsupervised morphological classification and its limits , 2005, The Journal of comparative neurology.

[9]  Johannes E. Schindelin,et al.  Identifying Neuronal Lineages of Drosophila by Sequence Analysis of Axon Tracts , 2010, The Journal of Neuroscience.

[10]  Hanno S Meyer,et al.  Cell-type specific properties of pyramidal neurons in neocortex underlying a layout that is modifiable depending on the cortical area. , 2010, Cerebral cortex.

[11]  William N. Venables,et al.  Modern Applied Statistics with S , 2010 .

[12]  S. B. Needleman,et al.  A general method applicable to the search for similarities in the amino acid sequence of two proteins. , 1970, Journal of molecular biology.

[13]  W. Härdle,et al.  Applied Multivariate Statistical Analysis , 2003 .

[14]  Matthew Ruffalo,et al.  Comparative analysis of algorithms for next-generation sequencing read alignment , 2011, Bioinform..

[15]  Florence Besse,et al.  From Curves to Trees: A Tree-like Shapes Distance Using the Elastic Shape Analysis Framework , 2015, Neuroinformatics.

[16]  Olivier Poch,et al.  A Comprehensive Benchmark Study of Multiple Sequence Alignment Methods: Current Challenges and Future Perspectives , 2011, PloS one.

[17]  G. Ascoli,et al.  L-Measure: a web-accessible tool for the analysis, comparison and search of digital reconstructions of neuronal morphologies , 2008, Nature Protocols.

[18]  William M. Rand,et al.  Objective Criteria for the Evaluation of Clustering Methods , 1971 .

[19]  John J. Grefenstette,et al.  On Comparing Neuronal Morphologies with the Constrained Tree-edit-distance , 2009, Neuroinformatics.

[20]  Eugene W. Myers,et al.  BlastNeuron for Automated Comparison, Retrieval and Clustering of 3D Neuron Morphologies , 2015, Neuroinformatics.

[21]  Concha Bielza,et al.  New insights into the classification and nomenclature of cortical GABAergic interneurons , 2013, Nature Reviews Neuroscience.

[22]  Giorgio A. Ascoli,et al.  Automated reconstruction of neuronal morphology: An overview , 2011, Brain Research Reviews.

[23]  Giorgio A. Ascoli,et al.  Topological characterization of neuronal arbor morphology via sequence representation: I - motif analysis , 2015, BMC Bioinformatics.

[24]  H. Markram,et al.  Anatomical, physiological, molecular and circuit properties of nest basket cells in the developing somatosensory cortex. , 2002, Cerebral cortex.

[25]  J. H. Ward Hierarchical Grouping to Optimize an Objective Function , 1963 .

[26]  Sholl Da Dendritic organization in the neurons of the visual and motor cortices of the cat. , 1953 .

[27]  L. Chalupa,et al.  Morphological properties of mouse retinal ganglion cells , 2006, Neuroscience.

[28]  L. Niels Cornelisse,et al.  Automated analysis of neuronal morphology, synapse number and synaptic recruitment , 2011, Journal of Neuroscience Methods.

[29]  Claus Weihs,et al.  klaR Analyzing German Business Cycles , 2005, Data Analysis and Decision Support.

[30]  Kaizhong Zhang,et al.  A constrained edit distance between unordered labeled trees , 1996, Algorithmica.

[31]  F. Karube,et al.  Selective coexpression of multiple chemical markers defines discrete populations of neocortical GABAergic neurons. , 2011, Cerebral cortex.

[32]  Christophe Lenglet,et al.  ODF reconstruction in q-ball imaging with solid angle consideration , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[33]  Thomas K. Berger,et al.  Heterogeneity in the pyramidal network of the medial prefrontal cortex , 2006, Nature Neuroscience.

[34]  Adrian E. Raftery,et al.  mclust Version 4 for R : Normal Mixture Modeling for Model-Based Clustering , Classification , and Density Estimation , 2012 .

[35]  M. Korte,et al.  Fine-tuning of neuronal architecture requires two profilin isoforms , 2010, Proceedings of the National Academy of Sciences.

[36]  Martin Schader,et al.  Data Analysis and Decision Support , 2006 .

[37]  Yuji Ikegaya,et al.  Large-scale imaging of cortical network activity with calcium indicators , 2005, Neuroscience Research.

[38]  L. Luo,et al.  Comprehensive Maps of Drosophila Higher Olfactory Centers: Spatially Segregated Fruit and Pheromone Representation , 2007, Cell.

[39]  Gregory S.X.E. Jefferis,et al.  NBLAST: Rapid, Sensitive Comparison of Neuronal Structure and Construction of Neuron Family Databases , 2016, Neuron.

[40]  O. Sporns,et al.  Organization, development and function of complex brain networks , 2004, Trends in Cognitive Sciences.

[41]  K. Deisseroth,et al.  Engineering Approaches to Illuminating Brain Structure and Dynamics , 2013, Neuron.

[42]  G. Wittum,et al.  The tree-edit-distance, a measure for quantifying neuronal morphology , 2009, BMC Neuroscience.

[43]  Brian D. Ripley,et al.  Modern Applied Statistics with S Fourth edition , 2002 .

[44]  Rafael Yuste,et al.  Two-photon photostimulation and imaging of neural circuits , 2007, Nature Methods.

[45]  Alexander Borst,et al.  The Morphological Identity of Insect Dendrites , 2008, PLoS Comput. Biol..

[46]  Hyowon Lee,et al.  The morphology of supragranular pyramidal neurons in the human insular cortex: a quantitative Golgi study. , 2009, Cerebral cortex.

[47]  T. Freund,et al.  Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells , 2001, Neuroscience.

[48]  G. Ascoli,et al.  Quantitative morphometry of hippocampal pyramidal cells: Differences between anatomical classes and reconstructing laboratories , 2004, The Journal of comparative neurology.

[49]  Richard A. Johnson,et al.  Applied Multivariate Statistical Analysis , 1983 .

[50]  Adrian E. Raftery,et al.  Model-Based Clustering, Discriminant Analysis, and Density Estimation , 2002 .

[51]  C. Stevens,et al.  A General Principle of Neural Arbor Branch Density , 2011, Current Biology.

[52]  D. N. Cox,et al.  Turtle Functions Downstream of Cut in Differentially Regulating Class Specific Dendrite Morphogenesis in Drosophila , 2011, PloS one.

[53]  L. Hubert,et al.  Comparing partitions , 1985 .

[54]  Giorgio A. Ascoli,et al.  Towards the automatic classification of neurons , 2015, Trends in Neurosciences.

[55]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[56]  Ruchi Parekh,et al.  Neuronal Morphology Goes Digital: A Research Hub for Cellular and System Neuroscience , 2013, Neuron.

[57]  Mona Singh,et al.  Computational solutions for omics data , 2013, Nature Reviews Genetics.

[58]  Yasuo Kawaguchi,et al.  Dendritic branch typing and spine expression patterns in cortical nonpyramidal cells. , 2006, Cerebral cortex.

[59]  Giorgio A Ascoli,et al.  Quantifying neuronal size: summing up trees and splitting the branch difference. , 2008, Seminars in cell & developmental biology.

[60]  Julie H. Simpson,et al.  A GAL4-driver line resource for Drosophila neurobiology. , 2012, Cell reports.

[61]  Scott T. Acton,et al.  Path2Path: Hierarchical path-based analysis for neuron matching , 2011, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[62]  Giorgio A. Ascoli,et al.  Statistical analysis and data mining of digital reconstructions of dendritic morphologies , 2014, Front. Neuroanat..

[63]  P. Jonas,et al.  Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks , 2007, Nature Reviews Neuroscience.

[64]  Tamás F Freund,et al.  Interneuron Diversity series: Rhythm and mood in perisomatic inhibition , 2003, Trends in Neurosciences.

[65]  Guan-Yu Chen,et al.  Three-Dimensional Reconstruction of Brain-wide Wiring Networks in Drosophila at Single-Cell Resolution , 2011, Current Biology.

[66]  Stephen J. Smith,et al.  Deep molecular diversity of mammalian synapses: why it matters and how to measure it , 2012, Nature Reviews Neuroscience.