Synthesis and characterization of TiO2/Rh3+ nanoparticulate sols, xerogels and cryogels for photocatalytic applications

[1]  Tsunehiro Tanaka,et al.  Investigation of the formation process of photodeposited Rh nanoparticles on TiO2 by in situ time-resolved energy-dispersive XAFS analysis. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[2]  Audrey Denicourt-Nowicki,et al.  TiO2-supported Rh nanoparticles: From green catalyst preparation to application in arene hydrogenation in neat water , 2010 .

[3]  C. Jin,et al.  Novel thermally stable phosphorus-doped TiO2 photocatalyst synthesized by hydrolysis of TiCl4 , 2010 .

[4]  P. Fuierer,et al.  Influence of Sodium Chloride and Dibasic Sodium Phosphate Salt Matrices on the Anatase–Rutile Phase Transformation and Particle Size of Titanium Dioxide Powder , 2010 .

[5]  Shigeyasu Kuroda,et al.  Phase transformation of anatase–rutile crystals in doped and undoped TiO2 particles obtained by the oxidation of polycrystalline sulfide , 2009 .

[6]  A. Fujishima,et al.  TiO2 photocatalysis and related surface phenomena , 2008 .

[7]  A. Maldonado,et al.  Sensing properties of chemically sprayed TiO2 thin films using Ni, Ir, and Rh as catalysts , 2008 .

[8]  M. T. Colomer,et al.  Determination of Peptization Time of Particulate Sols Using Optical Techniques : Titania As a Case Study , 2008 .

[9]  Xiaobo Chen,et al.  Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. , 2007, Chemical reviews.

[10]  K. Sumathy,et al.  A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production , 2007 .

[11]  J. Schoonman,et al.  Addition of carbon to anatase TiO2 by n-hexane treatment- : surface or bulk doping? , 2006 .

[12]  J. R. Jurado,et al.  Synthesis and thermal evolution of TiO2-RuO2 xerogels , 2006 .

[13]  M. T. Colomer Nanoporous Anatase Thin Films as Fast Proton‐Conducting Materials , 2006 .

[14]  Valery Shklover,et al.  Nanocrystalline titanium oxide electrodes for photovoltaic applications , 2005 .

[15]  C. H. Chen,et al.  The influence of pH and cadmium sulfide on the photocatalytic degradation of 2-chlorophenol in titanium dioxide suspensions. , 2001, Water research.

[16]  M. Anpo,et al.  Photocatalytic decomposition of NO under visible light irradiation on the Cr‐ion‐implanted TiO2 thin film photocatalyst , 2000 .

[17]  M. Kang,et al.  Enhanced photodecomposition of 4-chlorophenol in aqueous solution by deposition of CdS on TiO2 , 1999 .

[18]  R. Gómez,et al.  Catalytic reduction of nitric oxide on Pt and Rh catalysts supported on alumina and titania synthesized by the sol-gel method , 1998 .

[19]  M. Anderson,et al.  Peptization process in the sol-gel preparation of porous anatase (TiO2) , 1995 .

[20]  Alexis T. Bell,et al.  Electron microscopy study of the interactions of rhodium with titania , 1985 .

[21]  A. L. Patterson The Scherrer Formula for X-Ray Particle Size Determination , 1939 .

[22]  M. T. Colomer,et al.  Peptization of Nanoparticulate Titania Sols Prepared Under Different Water-Alkoxide Molar Ratios , 2010 .

[23]  M. T. Colomer,et al.  Colloidal stability of nanosized titania aqueous suspensions , 2008 .

[24]  M. Morris,et al.  The critical size mechanism for the anatase to rutile transformation in TiO2 and doped-TiO2 , 2006 .

[25]  J. Banfield,et al.  Thermodynamic analysis of phase stability of nanocrystalline titania , 1998 .

[26]  F. Solymosi,et al.  Infrared spectroscopic study of the photoinduced activation of CO2 on TiO2 and Rh/TiO2 Catalysts , 1994 .

[27]  T. López,et al.  Study of rhodium-supported catalysts prepared via the sol-gel method , 1992 .

[28]  H. Tien,et al.  Photoproduction of hydrogen by dye-sensitized systems , 1984 .