A Spitzer mid-infrared spectral survey of mass-losing carbon stars in the Large Magellanic Cloud

We present a Spitzer Space Telescopespectroscopic survey of mass-losing carbon stars (and one oxygen-rich star) in the Large Magellanic Cloud. The stars represent the superwind phase on the Asymptotic Giant Branch, which forms a major source of dust for the interstellar medium in galaxies. The spectra cover the wavelength range 5‐38� m. They show varying combinations of dust continuum, dust emission features (SiC, MgS) and molecular absorption bands (C2H2, HCN). A set of four narrow bands, dubbed the Manchester system, is used to define the infrared continuum for dusty carbon stars. The r elations between the continuum colours and the strength of the dust and molecular features are studied, and are compared to Galactic stars of similar colours. The circumstellar 7-� m C2H2 band is found to be stronger at lower metallicity, from a comparison of stars in the Galaxy, the LMC and the SMC. This is explained by dredge-up of carbon, causing higher C/O ratios at low metallicity (less O). A possible 10-� m absorption feature seen in our spectra may be due to C3. This band has also been identified with interstellar silicate or silicon-nitr ite dust. We investigate the strength and central wavelength of the SiC and MgS dust bands as function of colour and metallicity. The line-to-continuum ratio of these bands shows some indication of being lower at low metallicity. The MgS band is only seen at dust temperatures below 600 K. We discuss the selection of carbon versus oxygen-rich AGB stars using the J K vs. K A colours, and show that these colours are relatively insensitive to chemical type. Metal -poor carbon stars form amorphous carbon dust from self-produced carbon. This type of dust forms more readily in the presence of a higher C/O ratio. Low metallicity carbon dust may contain a smaller fraction of SiC and MgS constituents, which do depend on metallicity. The formation efficiency of oxygen-rich dust depends more strongly on metallicity. We suggest that in lower-metallicity environments, the dust input into the Interstellar Medium by AGB stars is efficient but may be strongly biassed towards carbonaceous dust, as compared to the Galaxy.

[1]  T. Beers,et al.  Enrichment of Very Metal Poor Stars with Both r-Process and s-Process Elements from 8-10 M☉ Stars , 2005, astro-ph/0509788.

[2]  J. Bernard-Salas,et al.  The Unusual Silicate Dust around HV 2310, an Evolved Star in the Large Magellanic Cloud , 2005, astro-ph/0509461.

[3]  P. Ábrahám,et al.  The 10 μm Feature of M-Type Stars in the Large Magellanic Cloud and the Dust Condensation Sequence , 2005 .

[4]  I. Yamamura,et al.  Very Large Telescope three micron spectra of dust-enshrouded red giants in the Large Magellanic Cloud , 2005, astro-ph/0510510.

[5]  J. Blommaert,et al.  ESO–VLT and Spitzer spectroscopy of IRAS 05328−6827: a massive young stellar object in the Large Magellanic Cloud , 2005, astro-ph/0509695.

[6]  A. Speck,et al.  The Effect of Stellar Evolution on SiC Dust Grain Sizes , 2005, astro-ph/0508140.

[7]  A. Zijlstra,et al.  Dust-enshrouded giants in clusters in the Magellanic Clouds , 2005, astro-ph/0507571.

[8]  S. Kimeswenger,et al.  The Real-Time Stellar Evolution of Sakurai's Object , 2005, Science.

[9]  T. Henning,et al.  Detection of Silicon Nitride Particles in Extreme Carbon Stars , 2005 .

[10]  T. Bedding,et al.  Red variables in the OGLE-II data base - III. Constraints on the three-dimensional structures of the Large and Small Magellanic Clouds , 2005, astro-ph/0502440.

[11]  I. Yamamura,et al.  Three-micron spectra of AGB stars and supergiants in nearby galaxies , 2005, astro-ph/0501247.

[12]  M. Mollá,et al.  Low and intermediate mass star yields: The evolution of carbon abundances , 2004, astro-ph/0411746.

[13]  A. Zijlstra,et al.  Asymptotic giant branch superwind speed at low metallicity , 2004 .

[14]  U. Jørgensen,et al.  Dynamic model atmospheres of AGB stars : IV. A comparison of synthetic carbon star spectra with observations , 2004 .

[15]  E. Wright,et al.  The Spitzer Space Telescope Mission , 2004, astro-ph/0406223.

[16]  J. R. Houck,et al.  The Infrared Spectrograph (IRS) on the Spitzer Space Telescope , 2004, astro-ph/0406167.

[17]  M. Groenewegen Long Period Variables in the Magellanic Clouds: OGLE +2 MASS + DENIS , , 2004, astro-ph/0404561.

[18]  T. Bedding,et al.  Period and chemical evolution of SC stars , 2004, astro-ph/0404467.

[19]  Low-mass supernovae in the early Galactic halo: source of the double r/s-process enriched halo stars? , 2003, astro-ph/0312481.

[20]  M. Tamura,et al.  Variable stars in the Magellanic Clouds – II. The data and infrared properties , 2003, astro-ph/0312079.

[21]  Jean-Marie Flaud,et al.  New analysis of the ν2, ν3, ν4, and ν6 bands of formaldehyde H212C16O line positions and intensities in the 5–10μm spectral region , 2003 .

[22]  J. Bouwman,et al.  MgS in detached shells around carbon stars ⋆ Mining the mass-loss history , 2003, astro-ph/0309777.

[23]  P. Wood,et al.  Optical and near-IR spectra of O-rich Mira variables: A comparison between models and observations , 2003, astro-ph/0309689.

[24]  T. Henning,et al.  New Laboratory Spectra of Isolated β-SiC Nanoparticles: Comparison with Spectra Taken by the Infrared Space Observatory , 2003 .

[25]  M. Feast,et al.  The case for asymmetric dust around a C-rich asymptotic giant branch star , 2003, astro-ph/0308417.

[26]  A. Omont,et al.  Long period variables detected by ISO in the Small Magellanic Cloud , 2003, astro-ph/0304143.

[27]  M. Feast,et al.  Obscured asymptotic giant branch variables in the Large Magellanic Cloud and the period–luminosity relation , 2003, astro-ph/0302246.

[28]  L. Dray,et al.  Chemical enrichment by Wolf-Rayet and asymptotic giant branch stars , 2003 .

[29]  C. Sandin,et al.  Three-component modeling of C-rich AGB star winds - II. The effects of drift in long-period variables , 2003, astro-ph/0304278.

[30]  I. Yamamura,et al.  Very Large Telescope Spectra of Carbon Stars in the Large Magellanic Cloud and Their Metallicity Dependence , 2002 .

[31]  M. Schultheis,et al.  OH/IR stars in the inner bulge detected by ISOGAL ?;?? , 2002 .

[32]  K. Cook,et al.  K-Band Red Clump Distance to the Large Magellanic Cloud , 2002, astro-ph/0205495.

[33]  A. Tielens,et al.  The carrier of the ``30'' mu m emission feature in evolved stars. A simple model using magnesium sulfide , 2002, astro-ph/0204330.

[34]  S. Kwok,et al.  Infrared Space Observatory Observations of the Unidentified 30 Micron Feature in Proto-Planetary Nebulae , 2002 .

[35]  H. Walker,et al.  Classification of 2.4-45.2 Micron Spectra from the Infrared Space Observatory Short Wavelength Spectrometer , 2002, astro-ph/0201507.

[36]  Atlanta,et al.  UvA-DARE ( Digital Academic Repository ) Crystalline silicate dust around evolved stars . II . The crystalline silicate complexes , 2022 .

[37]  T. Onaka,et al.  The time variation in infrared water-vapour bands in Mira variables , 2002, astro-ph/0201084.

[38]  T. Millar,et al.  Sulphur-bearing carbon chains in IRC+10216 , 2001 .

[39]  M. Edmunds An elementary model for the dust cycle in galaxies , 2001 .

[40]  M. Cioni,et al.  Variability and spectral classification of LMC giants: Results from DENIS and EROS , 2001, astro-ph/0109014.

[41]  A. Tielens,et al.  Ice absorption features in the 5-8 μm region toward embedded protostars , 2001 .

[42]  Stephan D. Price,et al.  MSX, 2MASS, and the Large Magellanic Cloud: A Combined Near- and Mid-Infrared View , 2001, astro-ph/0107220.

[43]  Moshe ElitzurZeljko Ivezic Dusty winds – I. Self-similar solutions , 2001, astro-ph/0106096.

[44]  U. Jørgensen,et al.  Spectra of carbon-rich asymptotic giant branch stars between 0.5 and 2.5 $\mu$m: Theory meets observation , 2001 .

[45]  F. Ferrini,et al.  Galactic Chemical Evolution of Lithium: Interplay between Stellar Sources , 2001, astro-ph/0105558.

[46]  P. Ventura,et al.  The stellar origin of 7Li. Do AGB stars contribute a substantial fraction of the local Galactic lith , 2001, astro-ph/0105483.

[47]  A. Tielens,et al.  Crystallinity versus mass-loss rate in asymptotic giant branch stars , 2001, astro-ph/0101256.

[48]  Alexander G. G. M. Tielens,et al.  Methylpolyynes and Small Hydrocarbons in CRL 618 , 2001 .

[49]  Ana Heras,et al.  Infrared Space Observatory's Discovery of C4H2, C6H2, and Benzene in CRL 618 , 2001 .

[50]  M. Egan,et al.  Radiometric Validation of the Midcourse Space Experiment’s (MSX) Point Source Catalogs and the MSX Properties of Normal Stars , 2000 .

[51]  L. Willson Mass Loss from Cool Stars: Impact on the Evolution of Stars and Stellar Populations , 2000 .

[52]  T. Millar,et al.  Large molecules in the envelope surrounding IRC+10216 , 2000 .

[53]  T. Tanabé,et al.  The variability of Magellanic cluster infrared stars , 2000 .

[54]  S. Kwok,et al.  Infrared Space Observatory Spectroscopy of Extreme Carbon Stars , 2000 .

[55]  I. Yamamura,et al.  The [ITAL]ISO[/ITAL]/SWS Spectrum of IRC +10216: The Vibrational Bands of C[TINF]2[/TINF]H[TINF]2[/TINF] and HCN , 1999 .

[56]  H. Schmitt,et al.  A Revised and Extended Catalog of Magellanic System Clusters, Associations, and Emission Nebulae. II. The Large Magellanic Cloud , 1998, astro-ph/9810266.

[57]  S. Price,et al.  The Carbon-rich Dust Sequence: Infrared Spectral Classification of Carbon Stars , 1998 .

[58]  E. Dwek The Evolution of the Elemental Abundances in the Gas and Dust Phases of the Galaxy , 1997, astro-ph/9707024.

[59]  A. Speck,et al.  The nature of the silicon carbide in carbon star outflows , 1997 .

[60]  T. Onaka,et al.  Duration of the superwind phase of asymptotic giant branch stars , 1997, Nature.

[61]  Amsterdam,et al.  Obscured asymptotic giant branch stars in the Magellanic clouds. III New IRAS counterparts , 1996, astro-ph/9709119.

[62]  P. Wood,et al.  Evolution of Low- and Intermediate-Mass Stars to the End of the Asymptotic Giant Branch with Mass Loss , 1993 .

[63]  M. Feast,et al.  CH stars in the Large Magellanic Cloud and in our Galaxy , 1992 .

[64]  J. Whiteoak,et al.  OH/IR Stars in the Magellanic Clouds , 1992 .

[65]  N. Reid Cocoon stars in the Large Magellanic Cloud , 1991 .

[66]  Kevin Volk,et al.  A model of the 8-25 micron point source infrared sky , 1992 .

[67]  J. Mould,et al.  Luminous asymptotic giant branch stars in the Large Magellanic Cloud , 1990 .

[68]  M. Feast,et al.  A period–luminosity–colour relation for Mira variables , 1989 .

[69]  S. H. Moseley,et al.  Laboratory infrared spectra of predicted condensates in carbon-rich stars , 1985 .

[70]  S. H. Moseley,et al.  MgS grain component in circumstellar shells , 1985 .

[71]  M. Bessell,et al.  Long-period variables in the Magellanic Clouds: Supergiants, AGB stars, supernova precursors, planetary nebula precursors, and enrichment of the interstellar medium , 1983 .

[72]  J. F. Mccarthy,et al.  A far-infrared emission feature in carbon-rich stars and planetary nebulae , 1981 .

[73]  J. Goebel,et al.  Identification of new infrared bands in a carbon-rich Mira variable , 1981 .

[74]  I. Iben,et al.  Physical Processes in Red Giants , 1981 .

[75]  R. Treffers,et al.  High-resolution spectra of cool stars in the 10- and 20-micron regions , 1974 .