Deterministic and stochastic Duffing-van der Pol oscillators are non-explosive
暂无分享,去创建一个
[1] N. Namachchivaya. Stochastic bifurcation , 1990 .
[2] D. Rand,et al. Phase portraits and bifurcations of the non-linear oscillator: ẍ + (α + γx2 + βx + δx3 = 0 , 1980 .
[3] N. Namachchivaya. Hopf bifurcation in the presence of both parametric and external stochastic excitations , 1988 .
[4] Explosion time of second-order Ito processes , 1984 .
[5] Mtw,et al. Stochastic flows and stochastic differential equations , 1990 .
[6] H. Sussmann. On the Gap Between Deterministic and Stochastic Ordinary Differential Equations , 1978 .
[7] R. Léandre. Un exemple en theorie des flots stochastiques , 1983 .
[8] Stochastic non-linear oscillators , 1993, Advances in Applied Probability.
[9] Hani J. Doss,et al. Liens entre equations di erentielles stochastiques et ordinaires , 1977 .
[10] P. Holmes,et al. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.
[11] Xue-Mei Li. Strong p-completeness of stochastic differential equations and the existence of smooth flows on noncompact manifolds , 1994, 1911.07345.
[12] R. Khasminskii. Stochastic Stability of Differential Equations , 1980 .
[13] Yu-Kweng Michael Lin,et al. Probabilistic Structural Dynamics: Advanced Theory and Applications , 1967 .
[14] K. Schenk-Hoppé,et al. Bifurcation scenarios of the noisy duffing-van der pol oscillator , 1996 .