영상 스티칭 관점에서 SIFT 특징점 추출시간 감소를 위한 파라미터 분석

최근 가상현실(VR, Virtual Reality) 등 가장 많은 분야에서 가장 활발히 응용되고 있는 영상매체 중 하나가 전방위 영상 또는 파노라마 영상이다. 이 영상은 다양한 방법으로 획득된 영상들을 스티칭하여 생성하는데, 그 과정에서 스티칭에 필요한 특징점들을 추출하는데 가장 많은 시간이 소요된다. 이에 본 논문은 현재 가장 널리 사용되고 있는 SIFT 특징점을 추출하는 연산시간을 감소하는 것에 목적을 두고 SIFT 특징점들을 추출에 관여하는 파라미터들을 분석한다. 본 논문에서 고려하는 파라미터는 가우시안 필터링에 사용되는 가우시안 커널의 초기 표준편차, 국소극점을 추출하기 위한 가우시안 차영상군의 수, 그리고 옥타브 수의 세 가지이다. SIFT 알고리즘으로는 이 알고리즘을 제안한 Lowe 방식과 컨볼루션 캐스캐이드(convolution cascade) 방식인 Hess 방식을 고려한다. 먼저 각 파라미터 값이 연산시간에 미치는 영향을 분석하고, 실제 스티칭 실험을 수행하여 각 파라미터가 스티칭 성능에 미치는 영향을 분석한다. 마지막으로 두 분석결과를 토대로 성능저하 없이 연산시간을 최소로 하는 파라미터 값들을 추출한다.