Quantum computational chemistry

With small quantum computers becoming a reality, first applications are eagerly sought. Quantum chemistry presents a spectrum of computational problems, from relatively easy to classically intractable. Algorithms for the easiest of these have been run on the first quantum computers. But an urgent question is, how well will these algorithms scale to go beyond what is possible classically? This review presents strategies employed to construct quantum algorithms for quantum chemistry, with the goal that quantum computers will eventually answer presently inaccessible questions, for example, in transition metal catalysis or important biochemical reactions.

[1]  P. Barkoutsos,et al.  Quantum orbital-optimized unitary coupled cluster methods in the strongly correlated regime: Can quantum algorithms outperform their classical equivalents? , 2019, The Journal of chemical physics.

[2]  Harper R. Grimsley,et al.  Qubit-ADAPT-VQE: An Adaptive Algorithm for Constructing Hardware-Efficient Ansätze on a Quantum Processor , 2019, 1911.10205.

[3]  Francesco A. Evangelista,et al.  A Multireference Quantum Krylov Algorithm for Strongly Correlated Electrons. , 2019, Journal of chemical theory and computation.

[4]  J. Whitfield,et al.  Reducing qubit requirements for quantum simulation using molecular point group symmetries. , 2019, Journal of chemical theory and computation.

[5]  J. Gambetta,et al.  Quantum equation of motion for computing molecular excitation energies on a noisy quantum processor , 2019, Physical Review Research.

[6]  Yuya O. Nakagawa,et al.  Orbital optimized unitary coupled cluster theory for quantum computer , 2019, 1910.11526.

[7]  H. Neven,et al.  Optimal fermion-to-qubit mapping via ternary trees with applications to reduced quantum states learning , 2019, Quantum.

[8]  Harper R. Grimsley,et al.  Is the Trotterized UCCSD Ansatz Chemically Well-Defined? , 2019, Journal of chemical theory and computation.

[9]  John C. Platt,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[10]  Amir Kalev,et al.  An approximate description of quantum states , 2019, 1910.10543.

[11]  Pavel Lougovski,et al.  Quantum-classical simulation of two-site dynamical mean-field theory on noisy quantum hardware , 2019, Quantum Science and Technology.

[12]  E. Campbell,et al.  Compilation by stochastic Hamiltonian sparsification , 2019, Quantum.

[13]  N. Linke,et al.  Dynamical mean field theory algorithm and experiment on quantum computers , 2019, 1910.04735.

[14]  Zhenyu Cai,et al.  Resource Estimation for Quantum Variational Simulations of the Hubbard Model , 2019, 1910.02719.

[15]  Maria Schuld,et al.  Stochastic gradient descent for hybrid quantum-classical optimization , 2019, Quantum.

[16]  B. Nachman,et al.  Error detection on quantum computers improving the accuracy of chemical calculations , 2019, Physical Review A.

[17]  Gian Giacomo Guerreschi,et al.  Resource-efficient digital quantum simulation of d-level systems for photonic, vibrational, and spin-s Hamiltonians , 2019, npj Quantum Information.

[18]  Yuki Kurashige,et al.  A Jastrow-type decomposition in quantum chemistry for low-depth quantum circuits , 2019, 1909.12410.

[19]  K. B. Whaley,et al.  A non-orthogonal variational quantum eigensolver , 2019, New Journal of Physics.

[20]  N. Yamamoto On the natural gradient for variational quantum eigensolver , 2019, 1909.05074.

[21]  Daniel Stilck Francca,et al.  Noise-robust exploration of quantum matter on near-term quantum devices , 2019, 1909.04786.

[22]  J. Stokes,et al.  Quantum Natural Gradient , 2019, Quantum.

[23]  Margaret Martonosi,et al.  $O(N^3)$ Measurement Cost for Variational Quantum Eigensolver on Molecular Hamiltonians , 2019, IEEE Transactions on Quantum Engineering.

[24]  Ryan Babbush,et al.  Discontinuous Galerkin discretization for quantum simulation of chemistry , 2019, New Journal of Physics.

[25]  William M. Kirby,et al.  Measurement reduction in variational quantum algorithms , 2019, Physical Review A.

[26]  Barnaby van Straaten,et al.  Efficient quantum measurement of Pauli operators , 2019, 1908.06942.

[27]  Ryan Babbush,et al.  Nearly Optimal Measurement Scheduling for Partial Tomography of Quantum States , 2019, Physical Review X.

[28]  Jacob C. Curtis,et al.  Efficient Multiphoton Sampling of Molecular Vibronic Spectra on a Superconducting Bosonic Processor , 2019, Physical Review X.

[29]  Stuart Hadfield,et al.  Optimizing quantum heuristics with meta-learning , 2019, Quantum Machine Intelligence.

[30]  Jordan S. Cotler,et al.  Quantum Overlapping Tomography. , 2019, Physical review letters.

[31]  Ivano Tavernelli,et al.  Resource-efficient quantum algorithm for protein folding , 2019, npj Quantum Information.

[32]  Margaret Martonosi,et al.  Minimizing State Preparations in Variational Quantum Eigensolver by Partitioning into Commuting Families , 2019, 1907.13623.

[33]  Rolando D. Somma,et al.  Quantum eigenvalue estimation via time series analysis , 2019, New Journal of Physics.

[34]  Nathan Wiebe,et al.  Well-conditioned multiproduct Hamiltonian simulation , 2019, 1907.11679.

[35]  Tzu-Ching Yen,et al.  Measuring all compatible operators in one series of single-qubit measurements using unitary transformations. , 2019, Journal of chemical theory and computation.

[36]  Michele Mosca,et al.  Pauli Partitioning with Respect to Gate Sets. , 2019, 1907.07859.

[37]  Masoud Mohseni,et al.  Learning to learn with quantum neural networks via classical neural networks , 2019, ArXiv.

[38]  Vladyslav Verteletskyi,et al.  Measurement optimization in the variational quantum eigensolver using a minimum clique cover. , 2019, The Journal of chemical physics.

[39]  J. Whitfield,et al.  Analysis of superfast encoding performance for electronic structure simulations , 2019, Physical Review A.

[40]  Scott N. Genin,et al.  Iterative qubit coupled cluster method: A systematic approach to the full-CI limit in quantum chemistry calculations on NISQ devices , 2019, 1906.11192.

[41]  Li-Hua Lu,et al.  Quantum Approach to Fast Protein-Folding Time* , 2019, Chinese Physics Letters.

[42]  Xin Wang,et al.  Time-dependent Hamiltonian simulation with $L^1$-norm scaling , 2019, Quantum.

[43]  Yao Lu,et al.  Error-mitigated quantum gates exceeding physical fidelities in a trapped-ion system , 2019, Nature Communications.

[44]  Craig Gidney,et al.  How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits , 2019, Quantum.

[45]  M. Benedetti,et al.  Quantum circuit structure learning , 2019, 1905.09692.

[46]  Robert A. Lang,et al.  Exact and approximate symmetry projectors for the electronic structure problem on a quantum computer. , 2019, The Journal of chemical physics.

[47]  Daniel Litinski,et al.  Magic State Distillation: Not as Costly as You Think , 2019, Quantum.

[48]  Bryan O'Gorman,et al.  Generalized swap networks for near-term quantum computing , 2019, ArXiv.

[49]  Yuya O. Nakagawa,et al.  Theory of analytical energy derivatives for the variational quantum eigensolver , 2019, Physical Review Research.

[50]  L. DiCarlo,et al.  Calculating energy derivatives for quantum chemistry on a quantum computer , 2019, npj Quantum Information.

[51]  Ming-Cheng Chen,et al.  Demonstration of Adiabatic Variational Quantum Computing with a Superconducting Quantum Coprocessor. , 2019, Physical review letters.

[52]  Travis S. Humble,et al.  Quantum chemistry as a benchmark for near-term quantum computers , 2019, npj Quantum Information.

[53]  H. Fan,et al.  Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits , 2019, Science.

[54]  J. Whitfield,et al.  Young frames for quantum chemistry. , 2019, 1904.10469.

[55]  Ken M. Nakanishi,et al.  Subspace variational quantum simulator , 2019, Physical Review Research.

[56]  Yun Seong Nam,et al.  Toward convergence of effective field theory simulations on digital quantum computers , 2019, Physical Review A.

[57]  Peter L. McMahon,et al.  A Jacobi Diagonalization and Anderson Acceleration Algorithm For Variational Quantum Algorithm Parameter Optimization. , 2019, 1904.03206.

[58]  Martin Rötteler,et al.  Q# and NWChem: Tools for Scalable Quantum Chemistry on Quantum Computers , 2019, ArXiv.

[59]  Keisuke Fujii,et al.  Sequential minimal optimization for quantum-classical hybrid algorithms , 2019, Physical Review Research.

[60]  Ryan Babbush,et al.  Decoding quantum errors with subspace expansions , 2019, Nature Communications.

[61]  J. Kittl,et al.  A Method to Calculate Correlation for Density Functional Theory on a Quantum Processor , 2019, 1903.05550.

[62]  Edward Grant,et al.  An initialization strategy for addressing barren plateaus in parametrized quantum circuits , 2019, Quantum.

[63]  J. Gambetta,et al.  Error mitigation extends the computational reach of a noisy quantum processor , 2019, Nature.

[64]  M. A. Rol,et al.  Experimental error mitigation via symmetry verification in a variational quantum eigensolver , 2019, Physical Review A.

[65]  Ryan Babbush,et al.  Increasing the Representation Accuracy of Quantum Simulations of Chemistry without Extra Quantum Resources , 2019, Physical Review X.

[66]  Hartmut Neven,et al.  Improved Fault-Tolerant Quantum Simulation of Condensed-Phase Correlated Electrons via Trotterization , 2019, Quantum.

[67]  Dmitri Maslov,et al.  Ground-state energy estimation of the water molecule on a trapped ion quantum computer , 2019, ArXiv.

[68]  Ryan Babbush,et al.  Qubitization of Arbitrary Basis Quantum Chemistry Leveraging Sparsity and Low Rank Factorization , 2019, Quantum.

[69]  Juan Miguel Arrazola,et al.  Molecular docking with Gaussian Boson Sampling , 2019, Science Advances.

[70]  F. Brandão,et al.  Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution , 2019, Nature Physics.

[71]  John Napp,et al.  Low-Depth Gradient Measurements Can Improve Convergence in Variational Hybrid Quantum-Classical Algorithms. , 2019, Physical review letters.

[72]  Scott N. Genin,et al.  Quantum chemistry on quantum annealers , 2019, 1901.04715.

[73]  T. Martínez,et al.  Quantum Computation of Electronic Transitions Using a Variational Quantum Eigensolver. , 2019, Physical review letters.

[74]  Yuan Su,et al.  Nearly optimal lattice simulation by product formulas , 2019, Physical review letters.

[75]  Daisuke Shiomi,et al.  Quantum Chemistry on Quantum Computers: A Method for Preparation of Multiconfigurational Wave Functions on Quantum Computers without Performing Post-Hartree–Fock Calculations , 2018, ACS central science.

[76]  Keisuke Fujii,et al.  Methodology for replacing indirect measurements with direct measurements , 2018, Physical Review Research.

[77]  Harper R. Grimsley,et al.  An adaptive variational algorithm for exact molecular simulations on a quantum computer , 2018, Nature Communications.

[78]  Ying Li,et al.  Quantum computation with universal error mitigation on a superconducting quantum processor , 2018, Science Advances.

[79]  Nicolas P. D. Sawaya,et al.  Quantum Algorithm for Calculating Molecular Vibronic Spectra. , 2018, The journal of physical chemistry letters.

[80]  Alán Aspuru-Guzik,et al.  Quantum Chemistry in the Age of Quantum Computing. , 2018, Chemical reviews.

[81]  Scott N. Genin,et al.  Symmetry adaptation in quantum chemistry calculations on a quantum computer , 2018, 1812.09812.

[82]  Y. Li,et al.  Variational Quantum Simulation of General Processes. , 2018, Physical review letters.

[83]  Ryan Babbush,et al.  Majorana Loop Stabilizer Codes for Error Mitigation in Fermionic Quantum Simulations , 2018, 1812.08190.

[84]  Dmitri Babikov,et al.  Calculation of molecular vibrational spectra on a quantum annealer. , 2018, Journal of chemical theory and computation.

[85]  Austin G. Fowler,et al.  Efficient magic state factories with a catalyzed|CCZ⟩to2|T⟩transformation , 2018, Quantum.

[86]  Robert B. Griffiths,et al.  Quantum Error Correction , 2011 .

[87]  C. Gogolin,et al.  Evaluating analytic gradients on quantum hardware , 2018, Physical Review A.

[88]  E. Campbell Random Compiler for Fast Hamiltonian Simulation. , 2018, Physical review letters.

[89]  Jan-Michael Reiner,et al.  Finding the ground state of the Hubbard model by variational methods on a quantum computer with gate errors , 2018, Quantum Science and Technology.

[90]  Xiao Yuan,et al.  Digital quantum simulation of molecular vibrations , 2018, Chemical science.

[91]  Xiao Yuan,et al.  Quantum computation of molecular vibrations , 2018 .

[92]  Ying Li,et al.  Temporally correlated error tomography and mitigation in quantum computer , 2018, 1811.02734.

[93]  Mark Fingerhuth,et al.  Coarse-grained lattice protein folding on a quantum annealer , 2018, 1811.00713.

[94]  Alán Aspuru-Guzik,et al.  Potential of quantum computing for drug discovery , 2018, IBM J. Res. Dev..

[95]  Tomás Babej,et al.  A quantum alternating operator ansatz with hard and soft constraints for lattice protein folding , 2018, 1810.13411.

[96]  K. Vogiatzis,et al.  Computational Approach to Molecular Catalysis by 3d Transition Metals: Challenges and Opportunities , 2018, Chemical reviews.

[97]  I. G. Ryabinkin,et al.  Revising measurement process in the variational quantum eigensolver: Is it possible to reduce the number of separately measured operators? , 2018, 1810.11602.

[98]  S. Matsuura,et al.  VanQver: the variational and adiabatically navigated quantum eigensolver , 2018, New Journal of Physics.

[99]  Ken M. Nakanishi,et al.  Subspace-search variational quantum eigensolver for excited states , 2018, Physical Review Research.

[100]  James D. Whitfield,et al.  Superfast encodings for fermionic quantum simulation , 2018, Physical Review Research.

[101]  Jian-Wei Pan,et al.  12-Photon Entanglement and Scalable Scattershot Boson Sampling with Optimal Entangled-Photon Pairs from Parametric Down-Conversion. , 2018, Physical review letters.

[102]  P. Zoller,et al.  Self-verifying variational quantum simulation of lattice models , 2018, Nature.

[103]  Stephanie Wehner,et al.  Quantum codes for quantum simulation of fermions on a square lattice of qubits , 2018, Physical Review A.

[104]  K. B. Whaley,et al.  Generalized Unitary Coupled Cluster Wave functions for Quantum Computation. , 2018, Journal of chemical theory and computation.

[105]  G. Chan,et al.  The electronic complexity of the ground-state of the FeMo cofactor of nitrogenase as relevant to quantum simulations. , 2018, The Journal of chemical physics.

[106]  B. Terhal,et al.  Quantum phase estimation of multiple eigenvalues for small-scale (noisy) experiments , 2018, New Journal of Physics.

[107]  Daniel S. Levine,et al.  Postponing the orthogonality catastrophe: efficient state preparation for electronic structure simulations on quantum devices , 2018, 1809.05523.

[108]  Ivano Tavernelli,et al.  Gate-Efficient Simulation of Molecular Eigenstates on a Quantum Computer , 2018, Physical Review Applied.

[109]  Scott N. Genin,et al.  Qubit Coupled Cluster Method: A Systematic Approach to Quantum Chemistry on a Quantum Computer. , 2018, Journal of chemical theory and computation.

[110]  Peter V Coveney,et al.  A Comparison of the Bravyi–Kitaev and Jordan–Wigner Transformations for the Quantum Simulation of Quantum Chemistry , 2018, Journal of chemical theory and computation.

[111]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[112]  Ying Li,et al.  Mitigating algorithmic errors in a Hamiltonian simulation , 2018, Physical Review A.

[113]  Ryan Babbush,et al.  Low rank representations for quantum simulation of electronic structure , 2018, npj Quantum Information.

[114]  Daniel Litinski,et al.  A Game of Surface Codes: Large-Scale Quantum Computing with Lattice Surgery , 2018, Quantum.

[115]  T. O'Brien,et al.  Low-cost error mitigation by symmetry verification , 2018, Physical Review A.

[116]  Hartmut Neven,et al.  Quantum simulation of chemistry with sublinear scaling in basis size , 2018, npj Quantum Information.

[117]  J. Ignacio Cirac,et al.  Analogue quantum chemistry simulation , 2018, Nature.

[118]  M. Barbatti,et al.  Multireference Approaches for Excited States of Molecules. , 2018, Chemical reviews.

[119]  Guang Hao Low,et al.  Hamiltonian simulation with nearly optimal dependence on spectral norm , 2018, STOC.

[120]  D. Berry,et al.  Black-Box Quantum State Preparation without Arithmetic. , 2018, Physical review letters.

[121]  Simon Benjamin,et al.  Error-Mitigated Digital Quantum Simulation. , 2018, Physical review letters.

[122]  Peter Zoller,et al.  Quantum localization bounds Trotter errors in digital quantum simulation , 2018, Science Advances.

[123]  S. Gray,et al.  Recovering noise-free quantum observables , 2018, Physical Review A.

[124]  Richard Jozsa,et al.  Implementing smooth functions of a Hermitian matrix on a quantum computer , 2018, Journal of Physics Communications.

[125]  Xiao Yuan,et al.  Variational quantum algorithms for discovering Hamiltonian spectra , 2018, Physical Review A.

[126]  Takeshi Yamazaki,et al.  Towards the Practical Application of Near-Term Quantum Computers in Quantum Chemistry Simulations: A Problem Decomposition Approach , 2018, ArXiv.

[127]  Scott N. Genin,et al.  Constrained Variational Quantum Eigensolver: Quantum Computer Search Engine in the Fock Space. , 2018, Journal of chemical theory and computation.

[128]  J. O'Brien,et al.  Simulating the vibrational quantum dynamics of molecules using photonics , 2018, Nature.

[129]  Panagiotis Spentzouris,et al.  Digital quantum computation of fermion-boson interacting systems , 2018, Physical Review A.

[130]  Yuan Su,et al.  Faster quantum simulation by randomization , 2018, Quantum.

[131]  S. Brierley,et al.  Variational Quantum Computation of Excited States , 2018, Quantum.

[132]  Ivano Tavernelli,et al.  Quantum algorithms for electronic structure calculations: Particle-hole Hamiltonian and optimized wave-function expansions , 2018, Physical Review A.

[133]  Alexandru Paler,et al.  Encoding Electronic Spectra in Quantum Circuits with Linear T Complexity , 2018, Physical Review X.

[134]  Maria Kieferova,et al.  Simulating the dynamics of time-dependent Hamiltonians with a truncated Dyson series , 2018, Physical Review A.

[135]  Stephen Gray,et al.  Accounting for errors in quantum algorithms via individual error reduction , 2018, npj Quantum Information.

[136]  S. Zanker,et al.  Effects of gate errors in digital quantum simulations of fermionic systems , 2018, Quantum Science and Technology.

[137]  Ying Li,et al.  Variational ansatz-based quantum simulation of imaginary time evolution , 2018, npj Quantum Information.

[138]  H. Neven,et al.  Barren plateaus in quantum neural network training landscapes , 2018, Nature Communications.

[139]  Sabre Kais,et al.  Quantum machine learning for electronic structure calculations , 2018, Nature Communications.

[140]  T. Monz,et al.  Quantum Chemistry Calculations on a Trapped-Ion Quantum Simulator , 2018, Physical Review X.

[141]  J. Huh,et al.  Quantum Computing for Molecular Vibronic Spectra and Gaussian Boson Sampling , 2018, Journal of Physics: Conference Series.

[142]  H. Neven,et al.  Low-Depth Quantum Simulation of Materials , 2018 .

[143]  Patrick J. Coles,et al.  Learning the quantum algorithm for state overlap , 2018, New Journal of Physics.

[144]  Panagiotis Spentzouris,et al.  Electron-Phonon Systems on a Universal Quantum Computer. , 2018, Physical review letters.

[145]  Jonathan Carter,et al.  Computation of Molecular Spectra on a Quantum Processor with an Error-Resilient Algorithm , 2018 .

[146]  Alán Aspuru-Guzik,et al.  The Matter Simulation (R)evolution , 2018, ACS central science.

[147]  S. Brierley,et al.  Accelerated Variational Quantum Eigensolver. , 2018, Physical review letters.

[148]  Jeongwan Haah,et al.  Quantum Algorithm for Simulating Real Time Evolution of Lattice Hamiltonians , 2018, 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS).

[149]  Srihari Keshavamurthy,et al.  Annual Review of Physical Chemistry , 2018 .

[150]  J. McClean,et al.  Application of fermionic marginal constraints to hybrid quantum algorithms , 2018, 1801.03524.

[151]  Jonathan Romero,et al.  Low-depth circuit ansatz for preparing correlated fermionic states on a quantum computer , 2018, Quantum Science and Technology.

[152]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[153]  S. Benjamin,et al.  Practical Quantum Error Mitigation for Near-Future Applications , 2017, Physical Review X.

[154]  J. Ignacio Cirac,et al.  Faster ground state preparation and high-precision ground energy estimation with fewer qubits , 2017, Journal of Mathematical Physics.

[155]  A. Akhmerov,et al.  Majorana-Based Fermionic Quantum Computation. , 2017, Physical review letters.

[156]  Kanav Setia,et al.  Bravyi-Kitaev Superfast simulation of electronic structure on a quantum computer. , 2017, The Journal of chemical physics.

[157]  Yangchao Shen,et al.  Quantum optical emulation of molecular vibronic spectroscopy using a trapped-ion device† †Electronic supplementary information (ESI) available: Trapped ion implementation of quantum optical operations, an experiment detection scheme, and experimental data error analysis. See DOI: 10.1039/c7sc04602b , 2017, Chemical science.

[158]  Damian S. Steiger,et al.  Quantum Algorithm for Spectral Measurement with a Lower Gate Count. , 2017, Physical review letters.

[159]  Dmitri Maslov,et al.  Toward the first quantum simulation with quantum speedup , 2017, Proceedings of the National Academy of Sciences.

[160]  D. Berry,et al.  Improved techniques for preparing eigenstates of fermionic Hamiltonians , 2017, 1711.10460.

[161]  Isaac H. Kim,et al.  Robust entanglement renormalization on a noisy quantum computer , 2017, 1711.07500.

[162]  Kevin J. Sung,et al.  Quantum algorithms to simulate many-body physics of correlated fermions. , 2017, 1711.05395.

[163]  Alán Aspuru-Guzik,et al.  Quantum Simulation of Electronic Structure with Linear Depth and Connectivity. , 2017, Physical review letters.

[164]  Peter D. Johnson,et al.  QVECTOR: an algorithm for device-tailored quantum error correction , 2017, 1711.02249.

[165]  Sae Woo Nam,et al.  Approximating vibronic spectroscopy with imperfect quantum optics , 2017, Journal of Physics B: Atomic, Molecular and Optical Physics.

[166]  Yudong Cao,et al.  OpenFermion: the electronic structure package for quantum computers , 2017, Quantum Science and Technology.

[167]  Steven R White,et al.  Hybrid grid/basis set discretizations of the Schrödinger equation. , 2017, The Journal of chemical physics.

[168]  Aram W. Harrow,et al.  Quantum computational supremacy , 2017, Nature.

[169]  Xiao Wang,et al.  Psi4 1.1: An Open-Source Electronic Structure Program Emphasizing Automation, Advanced Libraries, and Interoperability. , 2017, Journal of chemical theory and computation.

[170]  Sabre Kais,et al.  Electronic Structure Calculations and the Ising Hamiltonian. , 2017, The journal of physical chemistry. B.

[171]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[172]  Jian-Wei Pan,et al.  10-Qubit Entanglement and Parallel Logic Operations with a Superconducting Circuit. , 2017, Physical review letters.

[173]  L. Sun,et al.  Simulation of molecular spectroscopy with circuit quantum electrodynamics. , 2017, Science bulletin.

[174]  S. Paesani,et al.  Experimental Bayesian Quantum Phase Estimation on a Silicon Photonic Chip. , 2017, Physical review letters.

[175]  Isaac H. Kim Noise-resilient preparation of quantum many-body ground states , 2017, 1703.00032.

[176]  Yangchao Shen,et al.  Quantum optical emulation of molecular vibronic spectroscopy using a trapped-ion device† †Electronic supplementary information (ESI) available: Trapped ion implementation of quantum optical operations, an experiment detection scheme, and experimental data error analysis. See DOI: 10.1039/c7sc04602b , 2017, Chemical science.

[177]  J. Gambetta,et al.  Tapering off qubits to simulate fermionic Hamiltonians , 2017, 1701.08213.

[178]  Matthias Troyer,et al.  Operator locality in the quantum simulation of fermionic models , 2017, 1701.07072.

[179]  J. McClean,et al.  Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz , 2017, Quantum Science and Technology.

[180]  Mikhail Smelyanskiy,et al.  Practical optimization for hybrid quantum-classical algorithms , 2017, 1701.01450.

[181]  B. Terhal,et al.  Roads towards fault-tolerant universal quantum computation , 2016, Nature.

[182]  Kristan Temme,et al.  Error Mitigation for Short-Depth Quantum Circuits. , 2016, Physical review letters.

[183]  Ying Li,et al.  Efficient Variational Quantum Simulator Incorporating Active Error Minimization , 2016, 1611.09301.

[184]  Daniel A. Lidar,et al.  Adiabatic quantum computation , 2016, 1611.04471.

[185]  J. O'Brien,et al.  Witnessing eigenstates for quantum simulation of Hamiltonian spectra , 2016, Science Advances.

[186]  N. Rubin A Hybrid Classical/Quantum Approach for Large-Scale Studies of Quantum Systems with Density Matrix Embedding Theory , 2016, 1610.06910.

[187]  I. Chuang,et al.  Hamiltonian Simulation by Qubitization , 2016, Quantum.

[188]  G. Wendin Quantum information processing with superconducting circuits: a review , 2016, Reports on progress in physics. Physical Society.

[189]  Miao Huang,et al.  Observation of ten-photon entanglement using thin BiB 3 O 6 crystals , 2016, CLEO 2017.

[190]  D. Griffiths Introduction to Quantum Mechanics , 2016 .

[191]  Nathan Wiebe,et al.  Bounding the costs of quantum simulation of many-body physics in real space , 2016, 1608.05696.

[192]  M. Yung,et al.  Vibronic Boson Sampling: Generalized Gaussian Boson Sampling for Molecular Vibronic Spectra at Finite Temperature , 2016, Scientific Reports.

[193]  Daisuke Shiomi,et al.  Quantum Chemistry on Quantum Computers: A Polynomial-Time Quantum Algorithm for Constructing the Wave Functions of Open-Shell Molecules. , 2016, The journal of physical chemistry. A.

[194]  H. Neven,et al.  Characterizing quantum supremacy in near-term devices , 2016, Nature Physics.

[195]  I. Chuang,et al.  Optimal Hamiltonian Simulation by Quantum Signal Processing. , 2016, Physical review letters.

[196]  Pierre-Luc Dallaire-Demers,et al.  Quantum gates and architecture for the quantum simulation of the Fermi-Hubbard model , 2016, 1606.00208.

[197]  J. Whitfield,et al.  Local spin operators for fermion simulations , 2016, 1605.09789.

[198]  Chao Chen,et al.  Experimental Ten-Photon Entanglement. , 2016, Physical review letters.

[199]  Earl T. Campbell,et al.  Quantum computation with realistic magic-state factories , 2016, 1605.07197.

[200]  M. Troyer,et al.  Elucidating reaction mechanisms on quantum computers , 2016, Proceedings of the National Academy of Sciences.

[201]  T. R. Tan,et al.  High-Fidelity Universal Gate Set for ^{9}Be^{+} Ion Qubits. , 2016, Physical review letters.

[202]  J. Carter,et al.  Hybrid Quantum-Classical Hierarchy for Mitigation of Decoherence and Determination of Excited States , 2016, 1603.05681.

[203]  Isaac L. Chuang,et al.  Methodology of Resonant Equiangular Composite Quantum Gates , 2016, 1603.03996.

[204]  Martin Head-Gordon,et al.  A deterministic alternative to the full configuration interaction quantum Monte Carlo method. , 2016, The Journal of chemical physics.

[205]  Alán Aspuru-Guzik,et al.  Error Sensitivity to Environmental Noise in Quantum Circuits for Chemical State Preparation. , 2016, Journal of chemical theory and computation.

[206]  Markus Reiher,et al.  New Approaches for ab initio Calculations of Molecules with Strong Electron Correlation. , 2015, Chimia.

[207]  P. Coveney,et al.  Scalable Quantum Simulation of Molecular Energies , 2015, 1512.06860.

[208]  N. Linke,et al.  High-Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits. , 2015, Physical review letters.

[209]  S. R. Clark,et al.  Non-linear quantum-classical scheme to simulate non-equilibrium strongly correlated fermionic many-body dynamics , 2015, Scientific Reports.

[210]  Jay M. Gambetta,et al.  Building logical qubits in a superconducting quantum computing system , 2015, 1510.04375.

[211]  Matthew B. Hastings,et al.  Hybrid quantum-classical approach to correlated materials , 2015, 1510.03859.

[212]  Sarah E. Sofia,et al.  The Bravyi-Kitaev transformation: Properties and applications , 2015 .

[213]  Ryan Babbush,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[214]  Frank K. Wilhelm,et al.  Method to efficiently simulate the thermodynamic properties of the Fermi-Hubbard model on a quantum computer , 2015, 1508.04328.

[215]  Nathan Wiebe,et al.  Efficient Bayesian Phase Estimation. , 2015, Physical review letters.

[216]  M. Hastings,et al.  Progress towards practical quantum variational algorithms , 2015, 1507.08969.

[217]  M. Hastings,et al.  Solving strongly correlated electron models on a quantum computer , 2015, 1506.05135.

[218]  Ryan Babbush,et al.  Exponentially more precise quantum simulation of fermions in the configuration interaction representation , 2015, 1506.01029.

[219]  Annie Y. Wei,et al.  Exponentially more precise quantum simulation of fermions in second quantization , 2015, 1506.01020.

[220]  M. Yung,et al.  Quantum implementation of the unitary coupled cluster for simulating molecular electronic structure , 2015, 1506.00443.

[221]  Andrey E. Antipov,et al.  Solutions of the Two-Dimensional Hubbard Model: Benchmarks and Results from a Wide Range of Numerical Algorithms , 2015, 1505.02290.

[222]  Wataru Mizukami,et al.  Density matrix renormalization group for ab initio calculations and associated dynamic correlation methods: A review of theory and applications , 2015 .

[223]  J. Whitfield,et al.  Unified views of quantum simulation algorithms for chemistry , 2015, 1502.03771.

[224]  Garnet Kin-Lic Chan,et al.  The ab-initio density matrix renormalization group in practice. , 2015, The Journal of chemical physics.

[225]  Kenneth R. Brown,et al.  Magic state distillation and gate compilation in quantum algorithms for quantum chemistry , 2015, 1501.01298.

[226]  G. Guerreschi,et al.  Boson sampling for molecular vibronic spectra , 2014, Nature Photonics.

[227]  F. Verstraete,et al.  Tensor product methods and entanglement optimization for ab initio quantum chemistry , 2014, 1412.5829.

[228]  Andrew M. Childs,et al.  Simulating Hamiltonian dynamics with a truncated Taylor series. , 2014, Physical review letters.

[229]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[230]  Alán Aspuru-Guzik,et al.  On the Chemical Basis of Trotter-Suzuki Errors in Quantum Chemistry Simulation , 2014, 1410.8159.

[231]  Frank Neese,et al.  Low-energy spectrum of iron-sulfur clusters directly from many-particle quantum mechanics. , 2014, Nature chemistry.

[232]  Alán Aspuru-Guzik,et al.  Exploiting Locality in Quantum Computation for Quantum Chemistry. , 2014, The journal of physical chemistry letters.

[233]  John M. Tranquada,et al.  Colloquium : Theory of intertwined orders in high temperature superconductors , 2014, 1407.4480.

[234]  David Poulin,et al.  The Trotter step size required for accurate quantum simulation of quantum chemistry , 2014, Quantum Inf. Comput..

[235]  K. Miller,et al.  45 , 2014, Tao te Ching.

[236]  J. Whitfield,et al.  Quantum Simulation of Helium Hydride Cation in a Solid-State Spin Register. , 2014, ACS nano.

[237]  Sharad Joshi,et al.  Estimating Franck-Condon factors using an NMR quantum processor , 2014, 1405.2400.

[238]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[239]  Matthew B. Hastings,et al.  Improving quantum algorithms for quantum chemistry , 2014, Quantum Inf. Comput..

[240]  N. Linke,et al.  High-Fidelity Preparation, Gates, Memory, and Readout of a Trapped-Ion Quantum Bit. , 2014, Physical review letters.

[241]  Dennis R. Dean,et al.  Mechanism of Nitrogen Fixation by Nitrogenase: The Next Stage , 2014, Chemical reviews.

[242]  J. Pittner,et al.  Adiabatic state preparation study of methylene. , 2014, The Journal of chemical physics.

[243]  Peter J. Love,et al.  Quantum Algorithms for Quantum Chemistry based on the sparsity of the CI-matrix , 2013, 1312.2579.

[244]  M. Hastings,et al.  Gate count estimates for performing quantum chemistry on small quantum computers , 2013, 1312.1695.

[245]  Ashley M. Stephens,et al.  Fault-tolerant thresholds for quantum error correction with the surface code , 2013, 1311.5003.

[246]  Alán Aspuru-Guzik,et al.  Adiabatic Quantum Simulation of Quantum Chemistry , 2013, Scientific Reports.

[247]  Ashley Montanaro,et al.  Complexity Classification of Local Hamiltonian Problems , 2013, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[248]  Alán Aspuru-Guzik,et al.  Computational complexity of time-dependent density functional theory , 2013, ArXiv.

[249]  F. Nori,et al.  Quantum Simulation , 2013, Quantum Atom Optics.

[250]  G. Chan,et al.  Entangled quantum electronic wavefunctions of the Mn₄CaO₅ cluster in photosystem II. , 2013, Nature chemistry.

[251]  L. Lamata,et al.  From transistor to trapped-ion computers for quantum chemistry , 2013, Scientific Reports.

[252]  J. Whitfield Communication: Spin-free quantum computational simulations and symmetry adapted states. , 2013, The Journal of chemical physics.

[253]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[254]  Matthew B. Hastings,et al.  Faster phase estimation , 2013, Quantum Inf. Comput..

[255]  A. Short,et al.  Causal fermions in discrete space-time , 2013, 1303.4652.

[256]  C. Monroe,et al.  Scaling the Ion Trap Quantum Processor , 2013, Science.

[257]  B. Terhal Quantum error correction for quantum memories , 2013, 1302.3428.

[258]  Ananth Grama,et al.  A universal quantum circuit scheme for finding complex eigenvalues , 2013, Quantum Information Processing.

[259]  Ryan Babbush,et al.  Construction of Energy Functions for Lattice Heteropolymer Models: Efficient Encodings for Constraint Satisfaction Programming and Quantum Annealing , 2012 .

[260]  G. Chan,et al.  Excited States of Butadiene to Chemical Accuracy: Reconciling Theory and Experiment. , 2012, Journal of chemical theory and computation.

[261]  Alán Aspuru-Guzik,et al.  Faster quantum chemistry simulation on fault-tolerant quantum computers , 2012 .

[262]  R. Raussendorf Key ideas in quantum error correction , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[263]  P. Love,et al.  The Bravyi-Kitaev transformation for quantum computation of electronic structure. , 2012, The Journal of chemical physics.

[264]  Daniel A. Lidar,et al.  Review of Decoherence‐Free Subspaces, Noiseless Subsystems, and Dynamical Decoupling , 2012, 1208.5791.

[265]  P. Love Back to The Future: A Roadmap for Quantum Simulation From Vintage Quantum Chemistry , 2012, 1208.5524.

[266]  Alán Aspuru-Guzik,et al.  Computational Complexity in Electronic Structure , 2012, Physical chemistry chemical physics : PCCP.

[267]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[268]  Xinhua Peng,et al.  Quantum chemistry simulation on quantum computers: theories and experiments. , 2012, Physical chemistry chemical physics : PCCP.

[269]  Ove Christiansen,et al.  Selected new developments in vibrational structure theory: potential construction and vibrational wave function calculations. , 2012, Physical chemistry chemical physics : PCCP.

[270]  G. Rose,et al.  Finding low-energy conformations of lattice protein models by quantum annealing , 2012, Scientific Reports.

[271]  A. Houck,et al.  On-chip quantum simulation with superconducting circuits , 2012, Nature Physics.

[272]  Alán Aspuru-Guzik,et al.  Photonic quantum simulators , 2012, Nature Physics.

[273]  L. Veis,et al.  Quantum Computing Approach to Nonrelativistic and Relativistic Molecular Energy Calculations , 2012, 1203.6204.

[274]  Sergio Boixo,et al.  Introduction to Quantum Algorithms for Physics and Chemistry , 2012, 1203.1331.

[275]  Nathan Wiebe,et al.  Hamiltonian simulation using linear combinations of unitary operations , 2012, Quantum Inf. Comput..

[276]  J. Gambetta,et al.  Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits. , 2012, Physical review letters.

[277]  Tobias Schaetz,et al.  Experimental quantum simulations of many-body physics with trapped ions , 2012, Reports on progress in physics. Physical Society.

[278]  Christof Hättig,et al.  Explicitly correlated electrons in molecules. , 2012, Chemical reviews.

[279]  Trygve Helgaker,et al.  Recent advances in wave function-based methods of molecular-property calculations. , 2012, Chemical reviews.

[280]  W. Lester,et al.  Quantum Monte Carlo and related approaches. , 2012, Chemical reviews.

[281]  H. Lischka,et al.  Multiconfiguration self-consistent field and multireference configuration interaction methods and applications. , 2012, Chemical reviews.

[282]  Dmitry I. Lyakh,et al.  Multireference nature of chemistry: the coupled-cluster view. , 2012, Chemical reviews.

[283]  Lucas Visscher,et al.  Relativistic quantum chemistry on quantum computers , 2011, 1111.3490.

[284]  Austin G. Fowler,et al.  Towards practical classical processing for the surface code. , 2011, Physical review letters.

[285]  E. Torrontegui,et al.  Simulation of quantum collinear chemical reactions with ultracold atoms , 2011 .

[286]  Hans-Joachim Werner,et al.  An efficient local coupled cluster method for accurate thermochemistry of large systems. , 2011, The Journal of chemical physics.

[287]  R. Blatt,et al.  Quantum simulations with trapped ions , 2011, Nature Physics.

[288]  Alán Aspuru-Guzik,et al.  Solving Quantum Ground-State Problems with Nuclear Magnetic Resonance , 2011, Scientific reports.

[289]  F. Verstraete,et al.  Quantum simulation of time-dependent Hamiltonians and the convenient illusion of Hilbert space. , 2011, Physical review letters.

[290]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[291]  Barry C. Sanders,et al.  Simulating quantum dynamics on a quantum computer , 2010, 1011.3489.

[292]  T. Monz,et al.  14-Qubit entanglement: creation and coherence. , 2010, Physical review letters.

[293]  Austin G. Fowler,et al.  Quantum computing with nearest neighbor interactions and error rates over 1 , 2010, 1009.3686.

[294]  Yasunobu Nakamura,et al.  Quantum computers , 2010, Nature.

[295]  J. Whitfield,et al.  Simulating chemistry using quantum computers. , 2010, Annual review of physical chemistry.

[296]  Ali Alavi,et al.  Approaching chemical accuracy using full configuration-interaction quantum Monte Carlo: a study of ionization potentials. , 2010, The Journal of chemical physics.

[297]  William J. Munro,et al.  Using Quantum Computers for Quantum Simulation , 2010, Entropy.

[298]  Jiangfeng Du,et al.  NMR implementation of a molecular hydrogen quantum simulation with adiabatic state preparation. , 2010, Physical review letters.

[299]  J. Whitfield,et al.  Simulation of electronic structure Hamiltonians using quantum computers , 2010, 1001.3855.

[300]  Andrew M. Childs,et al.  Black-box hamiltonian simulation and unitary implementation , 2009, Quantum Inf. Comput..

[301]  G. Schatz The journal of physical chemistry letters , 2009 .

[302]  H. M. Wiseman,et al.  How to perform the most accurate possible phase measurements , 2009, 0907.0014.

[303]  F. Nori,et al.  Measurement-based quantum phase estimation algorithm for finding eigenvalues of non-unitary matrices , 2009, 0906.2538.

[304]  W. Munro,et al.  Quantum error correction for beginners , 2009, Reports on progress in physics. Physical Society.

[305]  B. Lanyon,et al.  Towards quantum chemistry on a quantum computer. , 2009, Nature chemistry.

[306]  Franco Nori,et al.  Efficient quantum algorithm for preparing molecular-system-like states on a quantum computer , 2009, 0902.1419.

[307]  I. Kassal,et al.  Preparation of many-body states for quantum simulation. , 2008, The Journal of chemical physics.

[308]  Alán Aspuru-Guzik,et al.  Quantum algorithm for obtaining the energy spectrum of molecular systems. , 2008, Physical chemistry chemical physics : PCCP.

[309]  G. Rose,et al.  Construction of model Hamiltonians for adiabatic quantum computation and its application to finding low-energy conformations of lattice protein models , 2008, 0801.3625.

[310]  I. Kassal,et al.  Polynomial-time quantum algorithm for the simulation of chemical dynamics , 2008, Proceedings of the National Academy of Sciences.

[311]  D. Berry,et al.  Entanglement-free Heisenberg-limited phase estimation , 2007, Nature.

[312]  Franco Nori,et al.  Modelling chemical reactions using semiconductor quantum dots , 2007, 0707.2997.

[313]  H. Briegel,et al.  Quantum simulation of interacting high-dimensional systems: The influence of noise , 2007, 0706.0154.

[314]  R. Bartlett,et al.  Coupled-cluster theory in quantum chemistry , 2007 .

[315]  L. Vandersypen,et al.  Spins in few-electron quantum dots , 2006, cond-mat/0610433.

[316]  E. Knill,et al.  Optimal quantum measurements of expectation values of observables , 2006, quant-ph/0607019.

[317]  M. Head‐Gordon,et al.  Simulated Quantum Computation of Molecular Energies , 2005, Science.

[318]  R. Cleve,et al.  Efficient Quantum Algorithms for Simulating Sparse Hamiltonians , 2005, quant-ph/0508139.

[319]  R. Jozsa An introduction to measurement based quantum computation , 2005, quant-ph/0508124.

[320]  F. Verstraete,et al.  Mapping local Hamiltonians of fermions to local Hamiltonians of spins , 2005, cond-mat/0508353.

[321]  N. Nagaosa,et al.  Doping a Mott insulator: Physics of high-temperature superconductivity , 2004, cond-mat/0410445.

[322]  S. Braunstein,et al.  Quantum Information with Continuous Variables , 2004, quant-ph/0410100.

[323]  R. Ball,et al.  Fermions without fermion fields. , 2004, Physical review letters.

[324]  Julia Kempe,et al.  The Complexity of the Local Hamiltonian Problem , 2004, FSTTCS.

[325]  Seth Lloyd,et al.  Adiabatic quantum computation is equivalent to standard quantum computation , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[326]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[327]  C. Monroe,et al.  Quantum dynamics of single trapped ions , 2003 .

[328]  H. Briegel,et al.  Measurement-based quantum computation on cluster states , 2003, quant-ph/0301052.

[329]  Pavel Hobza,et al.  Toward true DNA base-stacking energies: MP2, CCSD(T), and complete basis set calculations. , 2002, Journal of the American Chemical Society.

[330]  P. Anderson Superconductivity in High Tc Cuprates: The Cause is No Longer A Mystery , 2002, cond-mat/0201429.

[331]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[332]  E. Knill,et al.  Simulating physical phenomena by quantum networks , 2001, quant-ph/0108146.

[333]  Daniel A. Lidar,et al.  Polynomial-time simulation of pairing models on a quantum computer. , 2001, Physical review letters.

[334]  K. K. Nambiar,et al.  Foundations of Computer Science , 2001, Lecture Notes in Computer Science.

[335]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[336]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[337]  E. Knill,et al.  Quantum algorithms for fermionic simulations , 2000, cond-mat/0012334.

[338]  Martin Schütz,et al.  Low-order scaling local electron correlation methods. III. Linear scaling local perturbative triples correction (T) , 2000 .

[339]  Martin Head-Gordon,et al.  Benchmark variational coupled cluster doubles results , 2000 .

[340]  A. Kitaev,et al.  Fermionic Quantum Computation , 2000, quant-ph/0003137.

[341]  Hans-Joachim Werner,et al.  Local perturbative triples correction (T) with linear cost scaling , 2000 .

[342]  M. Sipser,et al.  Quantum Computation by Adiabatic Evolution , 2000, quant-ph/0001106.

[343]  Stefano Evangelisti,et al.  A full-configuration benchmark for the N2 molecule , 1999 .

[344]  R. Feynman Simulating physics with computers , 1999 .

[345]  Y. Pashkin,et al.  Coherent control of macroscopic quantum states in a single-Cooper-pair box , 1999, Nature.

[346]  S. Lloyd,et al.  Quantum Computation over Continuous Variables , 1998, quant-ph/9810082.

[347]  S. Lloyd,et al.  Quantum Algorithm Providing Exponential Speed Increase for Finding Eigenvalues and Eigenvectors , 1998, quant-ph/9807070.

[348]  Daniel A. Lidar,et al.  Calculating the thermal rate constant with exponential speedup on a quantum computer , 1998, quant-ph/9807009.

[349]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[350]  Christof Zalka Simulating quantum systems on a quantum computer , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[351]  A. Kitaev Quantum computations: algorithms and error correction , 1997 .

[352]  G. Schoen,et al.  Quantum Manipulations of Small Josephson Junctions , 1997, cond-mat/9706016.

[353]  D. Abrams,et al.  Simulation of Many-Body Fermi Systems on a Universal Quantum Computer , 1997, quant-ph/9703054.

[354]  D. Gottesman Theory of fault-tolerant quantum computation , 1997, quant-ph/9702029.

[355]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[356]  Antony Jameson,et al.  Re-engineering the design process through computation , 1997 .

[357]  B. Burgess,et al.  Mechanism of Molybdenum Nitrogenase. , 1996, Chemical reviews.

[358]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[359]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[360]  DiVincenzo,et al.  Two-bit gates are universal for quantum computation. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[361]  Unruh,et al.  Maintaining coherence in quantum computers. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[362]  E. Dagotto Correlated electrons in high-temperature superconductors , 1993, cond-mat/9311013.

[363]  Umesh V. Vazirani,et al.  Quantum complexity theory , 1993, STOC.

[364]  L. Curtiss,et al.  Gaussian‐1 theory: A general procedure for prediction of molecular energies , 1989 .

[365]  Rodney J. Bartlett,et al.  Alternative coupled-cluster ansätze II. The unitary coupled-cluster method , 1989 .

[366]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[367]  Mark R. Hoffmann,et al.  A unitary multiconfigurational coupled‐cluster method: Theory and applications , 1988 .

[368]  J. J. Sakurai,et al.  Modern Quantum Mechanics , 1986 .

[369]  R. Bartlett,et al.  A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples , 1982 .

[370]  B. Roos,et al.  A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach , 1980 .

[371]  M. Suzuki,et al.  Generalized Trotter's formula and systematic approximants of exponential operators and inner derivations with applications to many-body problems , 1976 .

[372]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. IX. An Extended Gaussian‐Type Basis for Molecular‐Orbital Studies of Organic Molecules , 1971 .

[373]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. I. Use of Gaussian Expansions of Slater‐Type Atomic Orbitals , 1969 .

[374]  J. Hubbard Electron correlations in narrow energy bands , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[375]  H. Trotter On the product of semi-groups of operators , 1959 .

[376]  H. Eyring The Activated Complex in Chemical Reactions , 1935 .

[377]  P. Dirac Quantum Mechanics of Many-Electron Systems , 1929 .

[378]  E. Wigner,et al.  Über das Paulische Äquivalenzverbot , 1928 .

[379]  T. Takui,et al.  Open shell electronic state calculations on quantum computers: A quantum circuit for the preparation of configuration state functions based on Serber construction , 2019, Chemical Physics Letters.

[380]  M. Girvin,et al.  Quantum Simulation of Gauge Theories and Inflation , 2019, Journal Club for Condensed Matter Physics.

[381]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[382]  Sandeep Sharma,et al.  PySCF: the Python‐based simulations of chemistry framework , 2018 .

[383]  Leonie Mueck,et al.  Quantum reform. , 2015, Nature chemistry.

[384]  Daniel A. Lidar,et al.  Quantum Error Correction: Applications and implementations , 2013 .

[385]  W. Marsden I and J , 2012 .

[386]  M. Reiher,et al.  An enquiry into theoretical bioinorganic chemistry: how heuristic is the character of present-day quantum chemical methods? , 2011, Faraday discussions.

[387]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[388]  Tamara G. Kolda,et al.  Optimization by Direct Search: New Perspectives on Some Classical and Modern Methods , 2003, SIAM Rev..

[389]  M. Ratner Molecular electronic-structure theory , 2000 .

[390]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.

[391]  Rolf Landauer,et al.  Is quantum mechanics useful? , 1995, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[392]  A. Szabó,et al.  Modern quantum chemistry : introduction to advanced electronic structure theory , 1982 .

[393]  David J Rowe,et al.  EQUATIONS-OF-MOTION METHOD AND THE EXTENDED SHELL MODEL. , 1968 .

[394]  Jstor,et al.  Proceedings of the American Mathematical Society , 1950 .

[395]  M. G. Evans,et al.  Some applications of the transition state method to the calculation of reaction velocities, especially in solution , 1935 .

[396]  E. Wigner,et al.  About the Pauli exclusion principle , 1928 .

[397]  L. Richardson,et al.  The Deferred Approach to the Limit. Part I. Single Lattice. Part II. Interpenetrating Lattices , 1927 .

[398]  Physical Review Letters 63 , 1989 .