The MUSE Atlas of Discs (MAD): Ionized gas kinematic maps and an application to diffuse ionized gas

We have obtained data for 41 star forming galaxies in the MUSE Atlas of Discs (MAD) survey with VLT/MUSE. These data allow us, at high resolution of a few 100 pc, to extract ionized gas kinematics (V, σ) of the centres of nearby star forming galaxies spanning 3  dex in stellar mass. This paper outlines the methodology for measuring the ionized gas kinematics, which we will use in subsequent papers of this survey. We also show how the maps can be used to study the kinematics of diffuse ionized gas for galaxies of various inclinations and masses. Using two different methods to identify the diffuse ionized gas, we measure rotation velocities of this gas for a subsample of six galaxies. We find that the diffuse ionized gas rotates on average slower than the star forming gas with lags of 0–10 km s−1 while also having higher velocity dispersion. The magnitude of these lags is on average 5 km s−1 lower than observed velocity lags between ionized and molecular gas. Using Jeans models to interpret the lags in rotation velocity and the increase in velocity dispersion we show that most of the diffuse ionized gas kinematics are consistent with its emission originating from a somewhat thicker layer than the star forming gas, with a scale height that is lower than that of the stellar disc.

[1]  J. Brinchmann,et al.  The MUSE Atlas of Disks (MAD): resolving star formation rates and gas metallicities on <100 pc scales† , 2019, Monthly Notices of the Royal Astronomical Society.

[2]  A. Seth,et al.  Asymmetric Drift in the Andromeda Galaxy (M31) as a Function of Stellar Age , 2018, The Astrophysical Journal.

[3]  ska,et al.  A standard siren measurement of the Hubble constant from GW170817 without the electromagnetic counterpart , 2018, 1807.05667.

[4]  A. Bolatto,et al.  The EDGE-CALIFA Survey: Molecular and Ionized Gas Kinematics in Nearby Galaxies , 2018, The Astrophysical Journal.

[5]  Garching,et al.  Radiative transfer calculations of the diffuse ionized gas in disc galaxies with cosmic ray feedback , 2018, 1802.07749.

[6]  Martin M. Roth,et al.  On the Origin of Diffuse Ionized Gas in the Antennae Galaxy , 2017, 1712.04450.

[7]  M. D. Brok,et al.  The MUSE Hubble Ultra Deep Field Survey: V. Spatially resolved stellar kinematics of galaxies at redshift $0.2\lesssim z \lesssim 0.8$ , 2017, 1710.07694.

[8]  E. Zweibel,et al.  Detection of Extraplanar Diffuse Ionized Gas in M83 , 2017, 1707.08126.

[9]  J. Brinkmann,et al.  SDSS IV MaNGA—Rotation Velocity Lags in the Extraplanar Ionized Gas from MaNGA Observations of Edge-on Galaxies , 2017, 1704.02582.

[10]  M. Bershady,et al.  SDSS-IV MaNGA : the impact of diffuse ionized gas on emission-line ratios, interpretation of diagnostic diagrams and gas metallicity measurements , 2016, 1612.02000.

[11]  O. Streicher,et al.  MUSE-DRP: MUSE Data Reduction Pipeline , 2016 .

[12]  M. Cappellari Improving the full spectrum fitting method: accurate convolution with Gauss-Hermite functions , 2016, 1607.08538.

[13]  L. Kewley,et al.  The VIRUS-P Exploration of Nearby Galaxies (VENGA): Spatially Resolved Gas-Phase Metallicity Distributions in Barred and Unbarred Spirals , 2016, 1606.05713.

[14]  B. Groves,et al.  CHARACTERIZING SPIRAL ARM AND INTERARM STAR FORMATION , 2016, 1603.08009.

[15]  Simon J. Lilly,et al.  ZAP -- Enhanced PCA Sky Subtraction for Integral Field Spectroscopy , 2016, 1602.08037.

[16]  B. Elmegreen,et al.  Hα kinematics of S4G spiral galaxies – III. Inner rotation curves , 2016, 1602.02789.

[17]  A. Leroy,et al.  H I AND CO VELOCITY DISPERSIONS IN NEARBY GALAXIES , 2015, 1511.06006.

[18]  L. Ho,et al.  THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S4G): MULTI-COMPONENT DECOMPOSITION STRATEGIES AND DATA RELEASE , 2015 .

[19]  L. Ho,et al.  Hα kinematics of S4G spiral galaxies – II. Data description and non-circular motions , 2015, 1504.06282.

[20]  K. Sheth,et al.  A CLASSICAL MORPHOLOGICAL ANALYSIS OF GALAXIES IN THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S4G) , 2015, 1501.00454.

[21]  Jennifer Mack,et al.  DrizzlePac 2.0 - Introducing New Features , 2014, 1411.5605.

[22]  M. Newville,et al.  Lmfit: Non-Linear Least-Square Minimization and Curve-Fitting for Python , 2014 .

[23]  L. Wisotzki,et al.  Ionized gas kinematics of galaxies in the CALIFA survey. I. Velocity fields, kinematic parameters of the dominant component, and presence of kinematically distinct gaseous systems , 2014, 1408.5765.

[24]  M. Cappellari MGE_FIT_SECTORS: Multi-Gaussian Expansion fits to galaxy images , 2014 .

[25]  A. Leroy,et al.  A HIGH-DISPERSION MOLECULAR GAS COMPONENT IN NEARBY GALAXIES , 2013, 1309.6324.

[26]  K. Alatalo,et al.  The ATLAS3D project - XIV. The extent and kinematics of the molecular gas in early-type galaxies , 2012, 1211.1011.

[27]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[28]  A. Quirrenbach,et al.  CALIFA, the Calar Alto Legacy Integral Field Area survey : I. Survey presentation , 2011, 1111.0962.

[29]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[30]  M. Loupias,et al.  The MUSE second-generation VLT instrument , 2010, Astronomical Telescopes + Instrumentation.

[31]  M. Bershady,et al.  THE DISKMASS SURVEY. II. ERROR BUDGET , 2010, 1004.5043.

[32]  F. Fraternali,et al.  Stationary models for the extraplanar gas in disc galaxies , 2009, 0910.0404.

[33]  The University of Texas at Austin,et al.  THE SPATIALLY RESOLVED STAR FORMATION LAW FROM INTEGRAL FIELD SPECTROSCOPY: VIRUS-P OBSERVATIONS OF NGC 5194 , 2009, 0908.2810.

[34]  C. Morisset,et al.  PHOTOIONIZED MIXING LAYER MODELS OF THE DIFFUSE IONIZED GAS , 2009, 0902.3984.

[35]  R. J. Reynolds,et al.  The warm ionized medium in spiral galaxies , 2009, 0901.0941.

[36]  James Binney,et al.  Galactic Dynamics: Second Edition , 2008 .

[37]  Andreas Kelz,et al.  Design, construction, and performance of VIRUS-P: the prototype of a highly replicated integral-field spectrograph for HET , 2008, Astronomical Telescopes + Instrumentation.

[38]  Simon Thibault,et al.  GHαFaS: Galaxy Hα Fabry-Perot System for the William Herschel Telescope , 2008 .

[39]  Michele Cappellari,et al.  Measuring the inclination and mass-to-light ratio of axisymmetric galaxies via anisotropic Jeans models of stellar kinematics , 2008, 0806.0042.

[40]  J. Gach,et al.  GHASP: an Hα kinematic survey of spiral and irregular galaxies - VI. New Hα data cubes for 108 galaxies , 2008, 0805.0976.

[41]  P. Lira,et al.  An infrared study of the double nucleus in NGC 3256 , 2007 .

[42]  A. Cimatti,et al.  Multiwavelength Study of Massive Galaxies at z~2. I. Star Formation and Galaxy Growth , 2007, 0705.2831.

[43]  Columbia,et al.  Star Formation in AEGIS Field Galaxies since z = 1.1: The Dominance of Gradually Declining Star Formation, and the Main Sequence of Star-forming Galaxies , 2007, astro-ph/0701924.

[44]  R. J. Reynolds,et al.  A Multiwavelength Optical Emission Line Survey of Warm Ionized Gas in the Galaxy , 2006, astro-ph/0609558.

[45]  M. Bershady,et al.  Integral Field Unit Observations of NGC 4302: Kinematics of the Diffuse Ionized Gas Halo , 2006, astro-ph/0703324.

[46]  M. Cappellari,et al.  Late-type galaxies observed with SAURON: two-dimensional stellar and emission-line kinematics of 18 spirals , 2005, astro-ph/0512304.

[47]  P. T. de Zeeuw,et al.  Kinemetry: a generalization of photometry to the higher moments of the line-of-sight velocity distribution , 2005, astro-ph/0512200.

[48]  J. Binney,et al.  A dynamical model for the extraplanar gas in spiral galaxies , 2005, astro-ph/0511334.

[49]  J. Bland-Hawthorn,et al.  Imaging Fabry-Perot Spectroscopy of NGC 5775: Kinematics of the Diffuse Ionized Gas Halo , 2005, astro-ph/0509225.

[50]  F. Fraternali,et al.  Hydrostatic models for the rotation of extra-planar gas in disk galaxies , 2005, astro-ph/0509021.

[51]  H Germany,et al.  PMAS: The Potsdam Multi‐Aperture Spectrophotometer. I. Design, Manufacture, and Performance , 2005, astro-ph/0502581.

[52]  U. Toronto,et al.  Evolutionary synthesis of galaxies at high spectral resolution with the code PEGASE-HR. Metallicity and age tracers , 2004, astro-ph/0408419.

[53]  F. Fraternali,et al.  Kinematics of the ionised gas in the spiral galaxy NGC 2403 , 2004, astro-ph/0405619.

[54]  M. Bershady,et al.  SparsePak: A Formatted Fiber Field Unit for the WIYN Telescope Bench Spectrograph. I. Design, Construction, and Calibration , 2004, astro-ph/0403456.

[55]  J. Brinkmann,et al.  The physical properties of star-forming galaxies in the low-redshift universe , 2003, astro-ph/0311060.

[56]  R. Dettmar,et al.  An Hα survey aiming at the detection of extraplanar diffuse ionized gas in halos of edge-on spiral galaxies. II. The Hα survey atlas and catalog , 2003, astro-ph/0305472.

[57]  R. Walterbos,et al.  Optical Spectroscopy and Ionization Models of the Diffuse Ionized Gas in M33, M51/NGC 5195, and M81 , 2003 .

[58]  Michele Cappellari,et al.  Adaptive spatial binning of integral-field spectroscopic data using Voronoi tessellations , 2003, astro-ph/0302262.

[59]  A. Taylor,et al.  Seeing Through the Dust: The Detection of HI and the Exploration of the ISM in Galaxies , 2002 .

[60]  R. Rand,et al.  Kinematics of Diffuse Ionized Gas Halos: A Ballistic Model of Halo Rotation , 2002, astro-ph/0206193.

[61]  P. Amram,et al.  GHASP: An Hα kinematic survey of spiral and irregular galaxies - II. Velocity fields and rotation curves of 15 galaxies , 2002 .

[62]  M. Bureau,et al.  The SAURON project – I. The panoramic integral-field spectrograph , 2001, astro-ph/0103451.

[63]  M. Rozas,et al.  The Origin of the Diffuse Hα in Spirals , 2001 .

[64]  R. Rand Ionization, Kinematics, and Extent of the Diffuse Ionized Gas Halo of NGC 5775 , 2000, astro-ph/0006023.

[65]  R. J. Reynolds,et al.  WHAM Observations of Hα, [S II], and [N II] toward the Orion and Perseus Arms: Probing the Physical Conditions of the Warm Ionized Medium , 1999, astro-ph/9904143.

[66]  Edward L. Fitzpatrick,et al.  Correcting for the Effects of Interstellar Extinction , 1998, astro-ph/9809387.

[67]  Hawaii,et al.  The peculiar rotation curve of NGC 157 , 1997, astro-ph/9709282.

[68]  M. Honma,et al.  Nuclear Rotation Curves of Galaxies in the Co-Line Emission , 1997, astro-ph/9709115.

[69]  Y. Sofue The Most Completely Sampled Rotation Curves for Galaxies , 1995, astro-ph/9507098.

[70]  R. Walterbos,et al.  Diffused ionized gas in the spiral galaxy M31 , 1994 .

[71]  D. Mathewson,et al.  A southern sky survey of the peculiar velocities of 1355 spiral galaxies , 1992 .

[72]  R. J. Reynolds The column density and scale height of free electrons in the galactic disk , 1989 .

[73]  J. Bahcall,et al.  Distribution of dark matter in the spiral galaxy NGC 3198. , 1985 .

[74]  R. J. Reynolds A measurement of the hydrogen recombination rate in the diffuse interstellar medium , 1984 .

[75]  R. Carlberg,et al.  The age-velocity-dispersion relation in the solar neighborhood , 1984 .

[76]  Albert Bosma,et al.  21-cm line studies of spiral galaxies. 2. The distribution and kinematics of neutral hydrogen in spiral galaxies of various morphological types. , 1981 .

[77]  V. Rubin,et al.  Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 /R = 4kpc/ to UGC 2885 /R = 122 kpc/ , 1980 .

[78]  R. Tully The kinematics and dynamics of M51. III. The spiral structure , 1974 .

[79]  Fred Hoyle,et al.  On the Existence of an Ionized Layer about the Galactic Plane , 1963 .

[80]  Christer Sandin,et al.  Lyman-continuum leakage as dominant source of diffuse ionized gas in the Antennae galaxy , 2018 .

[81]  Michael Wegner,et al.  Ground-based and Airborne Instrumentation for Astronomy III , 2010 .

[82]  S. Tremaine,et al.  Galactic Dynamics , 2005 .

[83]  A. Sandage,et al.  The Carnegie atlas of galaxies , 1994 .

[84]  R. J. Reynolds The power requirement of the free electron layer in the Galactic disk , 1990 .