Zero-Sum Stopping Games with Asymmetric Information

We study a model of two-player, zero-sum, stopping games with asymmetric information. We assume that the payoff depends on two continuous-time Markov chains (X, Y), where X is only observed by player 1 and Y only by player 2, implying that the players have access to stopping times with respect to different filtrations. We show the existence of a value in mixed stopping times and provide a variational characterization for the value as a function of the initial distribution of the Markov chains. We also prove a verification theorem for optimal stopping rules which allows to construct optimal stopping times. Finally we use our results to solve explicitly two generic examples.

[1]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .

[2]  Pierre Cardaliaguet,et al.  A double obstacle problem arising in differential game theory , 2009 .

[3]  Y. Dolinsky Applications of weak convergence for hedging of game options , 2009, 0908.3661.

[4]  Christine Grun,et al.  A BSDE approach to stochastic differential games with incomplete information , 2011, 1106.2629.

[5]  A. Friedman Stochastic games and variational inequalities , 1973 .

[6]  Nicolas Vieille,et al.  Markov Games with Frequent Actions and Incomplete Information , 2013, 1307.3365.

[7]  Jérôme Renault,et al.  The Value of Markov Chain Games with Lack of Information on One Side , 2006, Math. Oper. Res..

[8]  Pierre Cardaliaguet,et al.  Differential Games with Asymmetric Information , 2007, SIAM J. Control. Optim..

[9]  J. R. Baxter,et al.  Compactness of stopping times , 1977 .

[10]  ERIK EKSTRÖM,et al.  Dynkin games with heterogeneous beliefs , 2017, J. Appl. Probab..

[11]  Abraham Neyman Existence of optimal strategies in Markov games with incomplete information , 2008, Int. J. Game Theory.

[12]  Weian Zheng,et al.  Tightness criteria for laws of semimartingales , 1984 .

[13]  Nicolas Vieille,et al.  Random Stopping Times in Stopping Problems and Stopping Games , 2012, 1211.5802.

[14]  Fabien Gensbittel Continuous-time limit of dynamic games with incomplete information and a more informed player , 2016, Int. J. Game Theory.

[15]  Christine Grun,et al.  On Dynkin games with incomplete information , 2012, 1207.2320.

[16]  P. Meyer Convergence faible et compacité des temps d'arrêt, d'après Baxter et Chacón , 1978 .

[17]  Catherine Rainer,et al.  Games with Incomplete Information in Continuous Time and for Continuous Types , 2012, Dyn. Games Appl..

[18]  P. Brémaud Point processes and queues, martingale dynamics , 1983 .

[19]  Rida Laraki,et al.  The Value of Zero-Sum Stopping Games in Continuous Time , 2005, SIAM J. Control. Optim..

[20]  P. Souganidis,et al.  Differential Games and Representation Formulas for Solutions of Hamilton-Jacobi-Isaacs Equations. , 1983 .

[21]  Eilon Solan,et al.  Equivalence between Random Stopping Times in Continuous Time , 2014, 1403.7886.

[22]  Bernard De Meyer,et al.  Price dynamics on a stock market with asymmetric information , 2007, Games Econ. Behav..

[23]  Catherine Rainer,et al.  On a Continuous-Time Game with Incomplete Information , 2008, Math. Oper. Res..

[24]  K Fan,et al.  Minimax Theorems. , 1953, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Abraham Neyman,et al.  The value of two-person zero-sum repeated games with incomplete information and uncertain duration , 2012, Int. J. Game Theory.

[26]  S. Sorin A First Course on Zero Sum Repeated Games , 2002 .

[27]  Fabien Gensbittel,et al.  Extensions of the Cav(u) Theorem for Repeated Games with Incomplete Information on One Side , 2015, Math. Oper. Res..

[28]  P. Cardaliaguet,et al.  Stochastic Differential Games with Asymmetric Information , 2007, math/0703155.

[29]  Fabien Gensbittel,et al.  A Two-Player Zero-sum Game Where Only One Player Observes a Brownian Motion , 2016, Dyn. Games Appl..

[30]  Microeconomics-Charles W. Upton Repeated games , 2020, Game Theory.

[31]  Bernard De Meyer,et al.  Repeated Games, Duality and the Central Limit Theorem , 1996, Math. Oper. Res..

[32]  Giorgio Ferrari,et al.  Nash equilibria of threshold type for two-player nonzero-sum games of stopping , 2015, 1508.03989.

[33]  Rida Laraki,et al.  Variational Inequalities, System of Functional Equations, and Incomplete Information Repeated Games , 2001, SIAM J. Control. Optim..

[34]  Fabien Gensbittel,et al.  A Dynkin Game on Assets with Incomplete Information on the Return , 2017, Math. Oper. Res..

[35]  Robert J . Aumann,et al.  28. Mixed and Behavior Strategies in Infinite Extensive Games , 1964 .

[36]  Fabien Gensbittel,et al.  The Value of Markov Chain Games with Incomplete Information on Both Sides , 2012, Math. Oper. Res..

[37]  Nicolas Vieille,et al.  Continuous-Time Dynkin Games with Mixed Strategies , 2002, SIAM J. Control. Optim..

[38]  P. Bremaud,et al.  Point Processes and Queues: Martingale Dynamics (Springer Series in Statistics) , 1981 .

[39]  R. M. Dudley,et al.  Real Analysis and Probability , 1989 .

[40]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .

[41]  Nicolas Vieille,et al.  Social Learning in One-Arm Bandit Problems , 2007 .

[42]  M. Heuer Asymptotically optimal strategies in repeated games with incomplete information , 1992 .

[43]  S. Sorin,et al.  An operator approach to zero-sum repeated games , 2001 .

[44]  Goran Peskir,et al.  Optimal Stopping Games for Markov Processes , 2008, SIAM J. Control. Optim..

[45]  Miquel Oliu-Barton,et al.  Differential Games with Asymmetric and Correlated Information , 2014, Dynamic Games and Applications.

[46]  Mark H. A. Davis Piecewise‐Deterministic Markov Processes: A General Class of Non‐Diffusion Stochastic Models , 1984 .

[47]  Fabien Gensbittel Covariance Control Problems over Martingales with Fixed Terminal Distribution Arising from Game Theory , 2013, SIAM J. Control. Optim..

[48]  P. Meyer,et al.  Probabilities and potential C , 1978 .