The spline collocation method for parabolic boundary integral equations on smooth curves
暂无分享,去创建一个
[1] M. Costabel,et al. Parabolic boundary integral operators symbolic representation and basic properties , 2001 .
[2] A. Piriou. Problèmes aux limites généraux pour des opérateurs différentiels paraboliques dans un domaine borné , 1971 .
[3] D. Arnold,et al. The convergence of spline collocation for strongly elliptic equations on curves , 1985 .
[4] A. Piriou. Une classe d'opérateurs pseudo-différentiels du type de Volterra , 1970 .
[5] Jukka Saranen,et al. The convergence of even degree spline collocation solution for potential problems in smooth domains of the plane , 1988 .
[6] George C. Hsiao,et al. Boundary integral solution of the two-dimensional heat equation† , 1993 .
[7] Martin Costabel,et al. Boundary integral operators for the heat equation , 1990 .
[8] J. Saranen,et al. Quadrature methods for strongly elliptic equations of negative order on smooth closed curves , 1993 .
[9] J. Saranen,et al. On the spline collocation method for the single-layer heat operator equation , 1994 .
[10] Douglas N. Arnold,et al. COERCIVITY OF THE SINGLE LAYER HEAT POTENTIAL by Douglas N. Arnold and Patrick J. Noon , 1989 .
[11] D. Arnold,et al. On the Asymptotic Convergence of Spline Collocation Methods for Partial Differential Equations , 1984 .
[12] Martin Costabel,et al. Spline collocation for strongly elliptic equations on the torus , 1992 .
[13] A. Friedman. Partial Differential Equations of Parabolic Type , 1983 .
[14] Douglas N. Arnold,et al. On the asymptotic convergence of collocation methods , 1983 .
[15] Siegfried Prössdorf,et al. Ein Lokalisierungsprinzip in der Theorie der Spline‐Approximationen und einige Anwendungen , 1984 .
[16] P. Noon. The Single Layer Heat Potential and Galerkin Boundary Element Methods for the Heat Equation , 1988 .
[17] Martin Costabel,et al. Spline collocation for convolutional parabolic boundary integral equations , 2000, Numerische Mathematik.