The spline collocation method for parabolic boundary integral equations on smooth curves

Summary. We consider the spline collocation method for a class of parabolic pseudodifferential operators. We show optimal order convergence results in a large scale of anisotropic Sobolev spaces. The results cover the classical boundary integral equations for the heat equation in the general case where the spatial domain has a smooth boundary in the plane. Our proof is based on a localization technique for which we use our recent results proved for parabolic pseudodifferential operators. For the localization we need also some special spline approximation results in anisotropic Sobolev spaces.

[1]  M. Costabel,et al.  Parabolic boundary integral operators symbolic representation and basic properties , 2001 .

[2]  A. Piriou Problèmes aux limites généraux pour des opérateurs différentiels paraboliques dans un domaine borné , 1971 .

[3]  D. Arnold,et al.  The convergence of spline collocation for strongly elliptic equations on curves , 1985 .

[4]  A. Piriou Une classe d'opérateurs pseudo-différentiels du type de Volterra , 1970 .

[5]  Jukka Saranen,et al.  The convergence of even degree spline collocation solution for potential problems in smooth domains of the plane , 1988 .

[6]  George C. Hsiao,et al.  Boundary integral solution of the two-dimensional heat equation† , 1993 .

[7]  Martin Costabel,et al.  Boundary integral operators for the heat equation , 1990 .

[8]  J. Saranen,et al.  Quadrature methods for strongly elliptic equations of negative order on smooth closed curves , 1993 .

[9]  J. Saranen,et al.  On the spline collocation method for the single-layer heat operator equation , 1994 .

[10]  Douglas N. Arnold,et al.  COERCIVITY OF THE SINGLE LAYER HEAT POTENTIAL by Douglas N. Arnold and Patrick J. Noon , 1989 .

[11]  D. Arnold,et al.  On the Asymptotic Convergence of Spline Collocation Methods for Partial Differential Equations , 1984 .

[12]  Martin Costabel,et al.  Spline collocation for strongly elliptic equations on the torus , 1992 .

[13]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .

[14]  Douglas N. Arnold,et al.  On the asymptotic convergence of collocation methods , 1983 .

[15]  Siegfried Prössdorf,et al.  Ein Lokalisierungsprinzip in der Theorie der Spline‐Approximationen und einige Anwendungen , 1984 .

[16]  P. Noon The Single Layer Heat Potential and Galerkin Boundary Element Methods for the Heat Equation , 1988 .

[17]  Martin Costabel,et al.  Spline collocation for convolutional parabolic boundary integral equations , 2000, Numerische Mathematik.