Baryon oscillations and dark‐energy constraints from imaging surveys

Baryonic oscillations in the galaxy power spectrum have been studied as a way of probing darkenergy models. While most studies have focused on spectroscopic surveys at high redshift, large multicolour imaging surveys have already been planned for the near future. In view of this, we study the prospects for measuring baryonic oscillations from angular statistics of galaxies binned using photometric redshifts. We use the galaxy bispectrum in addition to the power spectrum; this allows us to measure and marginalize over possibly complex galaxy bias mechanisms to get robust cosmological constraints. In our parameter estimation, we allow for a weakly non-linear biasing scheme that may evolve with redshift by two bias parameters in each of 10 redshift bins. We find that a multicolour imaging survey that probes redshifts beyond one can give interesting constraints on dark-energy parameters. In addition, the shape of the primordial power spectrum can be measured to better accuracy than with the cosmic microwave background (CMB) alone. We explore the impact of survey depth, area and calibration errors in the photometric redshifts on dark-energy constraints.

[1]  R. Nichol,et al.  Cosmological Parameters from Eigenmode Analysis of Sloan Digital Sky Survey Galaxy Redshifts , 2004, astro-ph/0401249.

[2]  E. Linder Exploring the expansion history of the universe. , 2002, Physical review letters.

[3]  Aniruddha R. Thakar,et al.  Angular Clustering with Photometric Redshifts in the Sloan Digital Sky Survey: Bimodality in the Clustering Properties of Galaxies , 2003, astro-ph/0305603.

[4]  Wayne Hu Dark Synergy: Gravitational Lensing and the CMB , 2001 .

[5]  Small scale cosmological perturbations: An Analytic approach , 1995, astro-ph/9510117.

[6]  R. Nichol,et al.  Cosmological parameters from SDSS and WMAP , 2003, astro-ph/0310723.

[7]  V. Narayanan,et al.  Analysis of Systematic Effects and Statistical Uncertainties in Angular Clustering of Galaxies from Early Sloan Digital Sky Survey Data , 2001, astro-ph/0107416.

[8]  O. Lahav,et al.  The 2dF Galaxy Redshift Survey: The bias of galaxies and the density of the Universe , 2001, astro-ph/0112161.

[10]  Masahiro Takada,et al.  Cosmological parameters from lensing power spectrum and bispectrum tomography , 2003, astro-ph/0310125.

[11]  Turner,et al.  CBR anisotropy and the running of the scalar spectral index. , 1995, Physical review. D, Particles and fields.

[12]  Edward J. Wollack,et al.  First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters , 2003, astro-ph/0302209.

[13]  Eric V. Linder,et al.  Cosmic structure and dark energy , 2003 .

[14]  Roman Scoccimarro Redshift-space distortions, pairwise velocities and nonlinearities , 2004 .

[15]  Fry Gravity, bias, and the galaxy three-point correlation function. , 1994, Physical review letters.

[16]  Eric V. Linder Baryon oscillations as a cosmological probe , 2003 .

[17]  J. Frieman,et al.  Constraints on galaxy bias, matter density, and primordial non-Gaussianity from the PSCz galaxy redshift survey. , 2000, Physical review letters.

[18]  Nick Kaiser,et al.  Weak gravitational lensing of distant galaxies , 1992 .

[19]  D. Nelson Limber,et al.  The Analysis of Counts of the Extragalactic Nebulae in Terms of a Fluctuating Density Field. II , 1953 .

[20]  Stefano Casertano,et al.  The Farthest Known Supernova: Support for an Accelerating Universe and a Glimpse of the Epoch of Deceleration , 2001, astro-ph/0104455.

[21]  Peter Garnavich,et al.  Cosmological Results from High-z Supernovae , 2003, astro-ph/0305008.

[22]  M. Dickinson,et al.  Photometric Redshifts for Galaxies in the GOODS Southern Field , 2003, astro-ph/0309068.

[23]  R. Ellis,et al.  Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.

[24]  Cluster Abundance Constraints on Quintessence Models , 1998, astro-ph/9804015.

[25]  J. Frieman,et al.  The Projected Three-Point Correlation Function: Theory and Observations , 1999 .

[26]  Hee-Jong SeoDaniel J. Eisenstein Probing Dark Energy with Baryonic Acoustic Oscillations from Future Large Galaxy Redshift Surveys , 2003 .

[27]  Asantha Cooray,et al.  Measuring Angular Diameter Distances through Halo Clustering , 2001, astro-ph/0105061.

[28]  P. Steinhardt,et al.  Cluster Abundance Constraints for Cosmological Models with a Time-varying, Spatially Inhomogeneous Energy Component with Negative Pressure , 1998 .

[29]  U. Seljak,et al.  A Line of sight integration approach to cosmic microwave background anisotropies , 1996, astro-ph/9603033.

[30]  S. Colombi,et al.  Large scale structure of the universe and cosmological perturbation theory , 2001, astro-ph/0112551.

[31]  Wayne Hu,et al.  Baryonic Features in the Matter Transfer Function , 1997, astro-ph/9709112.

[32]  Paul J. Steinhardt,et al.  Cosmological imprint of an energy component with general equation of state , 1998 .

[33]  M. Phillips,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[34]  Baryonic signatures in Large-Scale Structure , 1998, astro-ph/9812214.

[35]  M. Fukugita,et al.  Cosmic Microwave Background Observables and Their Cosmological Implications , 2001 .

[36]  M. Fukugita,et al.  CMB Observables and Their Cosmological Implications , 2000, astro-ph/0006436.

[37]  Wayne Hu,et al.  Redshifting rings of power , 2003, astro-ph/0306053.

[38]  D. Huterer,et al.  Weak lensing and dark energy , 2001, astro-ph/0106399.

[39]  V. Narayanan,et al.  The Angular Correlation Function of Galaxies from Early Sloan Digital Sky Survey Data , 2001, astro-ph/0107417.