Observations of nearshore crescentic sandbars

[1] The temporal and spatial variability of crescentic sandbars is analyzed with hourly long-term (months) video observations collected at four barred sites and are qualitatively compared to the temporal and spatial variability predicted by hypotheses underpinning existing approaches and models for crescentic bar formation (edge-wave template model, linear stability analysis, and nonlinear models). The observations, coming from the single barred beaches at Duck (North Carolina, USA) and Miyazaki (Kyushu, Japan), and from the double-barred beaches at the northern Gold Coast (Queensland, Australia) and Noordwijk (Netherlands), show that crescentic sandbar wavelength and amplitude variations over space and time are very common. For instance, at any moment in time, the wavelength of the smallest and longest crescentic bar can differ by a factor of 2. Temporal changes in wavelength and amplitude result from merging and splitting of individual crescents, causing the “final” configuration of a crescentic sandbar system to be very different from the initial configuration. The Gold Coast data indicate that these intrinsically nonlinear interactions are an attempt of the crescentic bar system to self-organize into a more uniform pattern, as splitting is usually confined to the longest crescentic bar observed, whereas merging usually combines the smallest crescentic bars into a longer bar. The observed spatial and temporal crescentic bar behavior contrasts qualitatively with behavior predicted from the edge-wave template model and implies that the predictive skill of linear stability models is limited. Nonlinear models are potentially better suited for a comparison against these field observations; several suggestions to improve these models, and hence to facilitate a data-model comparison, are made.

[1]  C. Woodroffe Coasts: Form, Process and Evolution , 2002 .

[2]  Douglas L. Inman,et al.  Edge waves and crescentic bars , 1971 .

[3]  D. Bailey,et al.  Longshore realignment of shore-parallel sand-bars at Wanganui, New Zealand , 2001 .

[4]  Kathelijne Mariken Wijnberg,et al.  Morphologic behaviour of a barred coast over a period of decades , 1996 .

[5]  W. Birkemeier,et al.  Storm-Induced Morphology Changes During DUCK85 , 1987 .

[6]  Nathaniel G. Plant,et al.  A simple model for interannual sandbar behavior , 1999 .

[7]  Mikio Hino,et al.  Theory on formation of rip-current and cuspidal coast , 1974 .

[8]  Ian L. Turner,et al.  Predicted and observed coastline changes at the Gold Coast artificial reef , 2001 .

[9]  B. G. Ruessink,et al.  Video observations of nearshore bar behaviour. Part 1: alongshore uniform variability , 2003 .

[10]  Edward B. Thornton,et al.  Energy saturation and phase speeds measured on a natural beach , 1982 .

[11]  B. G. Ruessink,et al.  Effect of hydrodynamics and bathymetry on video estimates of nearshore sandbar position , 2001 .

[12]  R. Huggett,et al.  Earth Surface Systems , 1985 .

[13]  K. Wijnberg,et al.  Three-Dimensional Behaviour of a Multiple Bar System , 1994 .

[14]  Anthony J. Bowen Patterns in the Water: Patterns in the Sand? , 1998 .

[15]  D. Boer Hierarchies and spatial scale in process geomorphology: a review , 1992 .

[16]  Andrew D. Short,et al.  Single and Multi-Bar Beach Change Models , 1993 .

[17]  K. Bryan,et al.  Edge wave trapping and amplification on barred beaches , 1996 .

[18]  Nathaniel G. Plant,et al.  Analysis of the scale of errors in nearshore bathymetric data , 2002 .

[19]  P. Cowell,et al.  Coastal Evolution: Morphodynamics of coastal evolution , 1995 .

[20]  M. Stive,et al.  LINEAR STABILITY OF A DOUBLE-BARRED COAST , 2003 .

[21]  Robert A. Holman,et al.  Setup and swash on a natural beach , 1985 .

[22]  R. Holman,et al.  Storm-induced response of a nearshore-bar system , 1985 .

[23]  K. T. Holland,et al.  Wavenumber-frequency structure of infragravity swash motions , 1999 .

[24]  D. Bowman,et al.  Bar morphology of dissipative beaches: An empirical model☆ , 1983 .

[25]  E. Thornton,et al.  Morphodynamic modeling of an embayed beach under wave group forcing , 2004 .

[26]  T. Aagaard Rhythmic beach and nearshore topography: examples from Denmark , 1988 .

[27]  Jørgen Fredsøe,et al.  A morphological stability analysis for a long straight barred coast , 1999 .

[28]  Daniel Calvete,et al.  A nonlinear model study on the long-term behavior of shore face–connected sand ridges , 2003 .

[29]  G. Schimke Crescentic coastal landforms. , 1968, Science.

[30]  O. Frihy,et al.  Beach and Nearshore Features Along the Dissipative Coastline of the Nile Delta, Egypt , 1993 .

[31]  M. Gourlay Beach and Dune Erosion Report M935/M936 , 1968 .

[32]  T. Aagaard Nearshore Bar Morphology on the Low-Energy Coast of Northern Zealand, Denmark , 1988 .

[33]  F. P. Shepard Revised nomenclature for depositional coastal features , 1952 .

[34]  P. Blondeaux MECHANICS OF COASTAL FORMS , 2003 .

[35]  Robert A. Holman,et al.  Quantification of sand bar morphology: A video technique based on wave dissipation , 1989 .

[36]  J. Damgaard,et al.  Morphodynamic modelling of rip channel growth , 2001 .

[37]  B. Ruessink,et al.  Analysis of observed two- and three-dimensional nearshore bar behaviour , 2000 .

[38]  F. Wilkerson,et al.  Earth surface systems: complexity, order, and scale , 2000 .

[39]  Giovanni Coco,et al.  A mechanism for the generation of wave‐driven rhythmic patterns in the surf zone , 2000 .

[40]  Edward B. Thornton,et al.  Swash oscillations on a natural beach , 1982 .

[41]  C. King,et al.  The Formation and Movement of Sand Bars by Wave Action , 1949 .

[42]  J. Barusseau,et al.  Disposition, caractères et formation des barres d'avant-côte festonnées du Golfe du Lion , 1981 .

[43]  L. Wright,et al.  Morphodynamic variability of surf zones and beaches: A synthesis , 1984 .

[44]  P. Blondeaux,et al.  Crescentic bedforms in the nearshore region , 1999, Journal of Fluid Mechanics.

[45]  B. G. Ruessink,et al.  Observations of swash under highly dissipative conditions , 1998 .

[46]  Andrew D. Short,et al.  Three Dimensional Beach-Stage Model , 1979, The Journal of Geology.

[47]  R. Guza,et al.  Resonant scattering of edge waves by longshore periodic topography , 1998, Journal of Fluid Mechanics.

[48]  R. Holman Pattern Formation in the Nearshore , 2001 .

[49]  D. Huntley,et al.  CRESCENTIC BARS AND NEARSHORE SELF-ORGANIZATION PROCESSES , 2003 .

[50]  R. Holman,et al.  Bars, bumps, and holes: Models for the generation of complex beach topography , 1982 .

[51]  Video observations of nearshore bar behaviour . Part 2 : alongshore non-uniform variability , 2003 .

[52]  Christian J. Stewart,et al.  Morphology, formation and migration of longshore sandwaves; Long Point, Lake Erie, Canada , 1988 .

[53]  J. Froidefond,et al.  Spatial Variation in Sinusoidal Wave Energy on a Crescentic Nearshore Bar; Application to the Cap-Ferret Coast, France , 1990 .

[54]  T. van der Meulen,et al.  BEACH AND DUKE EROSION TESTS , 1968 .

[55]  D. Bowman,et al.  Sequential Stage Development of Crescentic Bars: Hahoterim Beach, Southeastern Mediterranean , 1982 .

[56]  C. Sonu COLLECTIVE MOVEMENT OF SEDIMENT IN LITTORAL ENVIRONMENT , 1968 .

[57]  R. Holman,et al.  The spatial and temporal variability of sand bar morphology , 1990 .

[58]  D. Huntley,et al.  Self-organization mechanisms for the formation of nearshore crescentic and transverse sand bars , 2002, Journal of Fluid Mechanics.

[59]  Choule J. Sonu,et al.  Three-Dimensional Beach Changes , 1973, The Journal of Geology.

[60]  D. Huntley Edge Waves in a Crescentic Bar System , 1980 .

[61]  E. Thornton,et al.  RIPEX: RIP CURRENT PULSATION MEASUREMENTS , 2003 .

[62]  L. Wright,et al.  Morphodynamics of a bar-trough surf zone☆ , 1986 .

[63]  Jørgen Fredsøe,et al.  SEA BED STABILITY ON A LONG STRAIGHT COAST , 1995 .

[64]  Robert T. Guza,et al.  The origin of swash cusps on beaches , 1982 .