A model for the simulation of the interactions between dynamic tooth loads and contact fatigue in spur gears

Abstract The main objective of the paper is to study the possible interactions between contact fatigue and dynamic tooth loads on gears. A specific 3D dynamic gear model is combined to contact fatigue models accounting for crack initiation and propagation. The numerical findings compare well with the experimental evidence from a back-to-back test rig. Three characteristic points on a tooth profile are analysed and it is shown that contact fatigue on spur gears clearly depends on dynamic phenomena. Finally, the introduction of profile relief is discussed and its positive influence on the risk of failures at engagement is emphasised.

[1]  X. Zheng,et al.  Calculation for rolling contact fatigue life and strength of case-hardened gear materials by computer , 1993 .

[2]  K. Aslantaş,et al.  A study of spur gear pitting formation and life prediction , 2004 .

[3]  P. Velex,et al.  A model for simulating the quasi-static and dynamic behaviour of solid wide-faced spur and helical gears , 2005 .

[4]  J. Morrow Cyclic Plastic Strain Energy and Fatigue of Metals , 1965 .

[5]  Robert McClung,et al.  On the finite element analysis of fatigue crack closure—1. Basic modeling issues , 1989 .

[6]  Srečko Glodež,et al.  Simulation of surface pitting due to contact loading , 1998 .

[7]  Herbert S. Cheng,et al.  Micromechanics Modeling of Crack Initiation Under Contact Fatigue , 1994 .

[8]  Matjaž Šraml,et al.  Fatigue crack initiation and propagation under cyclic contact loading , 2009 .

[9]  M. E. Haddad,et al.  Fatigue Crack Propagation of Short Cracks , 1979 .

[10]  R. C. McClung,et al.  On the finite element analysis of fatigue crack closure—2. Numerical results , 1989 .

[11]  B. Winderlich,et al.  Das Konzept der lokalen Dauerfestigkeit und seine Anwendung auf martensitische Randschichten, insbesondere Laserhärtungsschichten , 1990 .

[12]  Srečko Glodež,et al.  Modelling of crack growth under cyclic contact loading , 1998 .

[13]  H. Zenner,et al.  Fatigue limit of ductile metals under multiaxial loading , 2003 .

[14]  Qing Chen,et al.  Influence of microstructure and residual stress on the stages of case crushing , 1988 .

[15]  Youngsik Choi,et al.  Rolling contact fatigue life of finish hard machined surfaces ☆: Part 2. Experimental verification , 2006 .

[16]  K. N. Smith A Stress-Strain Function for the Fatigue of Metals , 1970 .

[17]  Srečko Glodež,et al.  A fracture mechanics model for the wear of gear flanks by pitting , 1997 .

[18]  T. Łagoda,et al.  Application of the Dang‐Van criterion for life determination under uniaxial random tension–compression with different mean values , 2004 .

[19]  D. Shang,et al.  A new approach to the determination of fatigue crack initiation size , 1998 .

[20]  S. Bogdański,et al.  Numerical stress analysis of rail rolling contact fatigue cracks , 1996 .

[21]  L. Coffin,et al.  A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal , 1954, Journal of Fluids Engineering.

[22]  Toshio Mura,et al.  A Dislocation Model for Fatigue Crack Initiation , 1981 .

[23]  K. L. Wang,et al.  A Numerical Solution to the Dynamic Load, Film Thickness, and Surface Temperatures in Spur Gears, Part I: Analysis , 1981 .

[24]  Ching-Hwei Chue,et al.  Pitting formation under rolling contact , 2000 .

[25]  Giorgio Donzella,et al.  Surface and Subsurface Cracks in Rolling Contact Fatigue of Hardened Components , 2002 .

[26]  Qing Chen,et al.  Initiation and propagation of case crushing cracks in rolling contact fatigue , 1988 .

[27]  P. Velex,et al.  Static and Dynamic Tooth Loading in Spur and Helical Geared Systems-Experiments and Model Validation , 2002 .

[28]  O. Basquin The exponential law of endurance tests , 1910 .

[29]  Jože Flašker,et al.  Numerical procedure for predicting the rolling contact fatigue crack initiation , 2003 .

[30]  R. Gnanamoorthy,et al.  Rolling/sliding contact fatigue life prediction of sintered and hardened steels , 2007 .

[31]  S. Manson Fatigue: A complex subject—Some simple approximations , 1965 .

[32]  O. Lang Dimensionierung komplizierter Bauteile aus Stahl im Bereich der Zeit‐ und Dauerfestigkeit , 1979 .

[33]  Srečko Glodež,et al.  Surface fatigue of gear teeth flanks , 1999 .

[34]  A. Molinari,et al.  Identification of rolling-sliding damage mechanisms in porous alloys , 2000 .

[35]  Cevdet Kaynak,et al.  Initiation and early growth of short fatigue cracks at inclusions , 1996 .

[36]  Salah R. Agha Fatigue performance of superfinish hard turned surfaces in rolling contact , 2000 .

[37]  John R. Yates,et al.  Stress ratio and the fatigue damage map—Part I: Modelling , 2004 .

[38]  Srečko Glodež,et al.  A NEW MODEL FOR THE NUMERICAL DETERMINATION OF PITTING RESISTANCE OF GEAR TEETH FLANKS , 1997 .

[39]  M. D. Bryant,et al.  A Pitting Model for Rolling Contact Fatigue , 1983 .

[40]  C. Richard Liu,et al.  A new methodology for predicting crack initiation life for rolling contact fatigue based on dislocation and crack propagation , 2008 .

[41]  G. R. Irwin,et al.  Linear fracture mechanics, fracture transition, and fracture control , 1968 .

[42]  Youngsik Choi,et al.  Rolling contact fatigue life of finish hard machined surfaces: Part 1. Model development☆ , 2006 .

[43]  Katsumi Inoue,et al.  Evaluation of the Strength of Carburized Spur Gear Teeth Based on Fracture Mechanics , 1993 .

[44]  Luca Susmel,et al.  Material fatigue properties for assessing mechanical components weakened by notches and defects , 2008 .

[45]  Srečko Glodež,et al.  The influence of different parameters on surface pitting of contacting mechanical elements , 2004 .

[46]  Katsumi Inoue,et al.  Bending Strength of Carburized SCM420H Spur Gear Teeth , 1986 .

[47]  J. Flašker,et al.  Computational approach to contact fatigue damage initiation analysis of gear teeth flanks , 2007 .