Accelerating the LSTRS Algorithm

In a process for the extraction of celluloses from lignocelluloses, the extraction is carried out by means of heating with aqueous acetic acid under pressure and the addition of formic acid, whereby there is obtained a cellulose with a very low residual lignin content, which can be bleached with ozone and peracetic acid to high grades of white, and acetic and formic acid are recovered by means of distillation, so that waste waters do not, therefore, accumulate.

[1]  Nicholas I. M. Gould,et al.  Trust Region Methods , 2000, MOS-SIAM Series on Optimization.

[2]  Danny C. Sorensen,et al.  A New Matrix-Free Algorithm for the Large-Scale Trust-Region Subproblem , 2000, SIAM J. Optim..

[3]  Per Christian Hansen,et al.  Regularization Tools version 4.0 for Matlab 7.3 , 2007, Numerical Algorithms.

[4]  A. Carasso Determining Surface Temperatures from Interior Observations , 1982 .

[5]  D. Sorensen,et al.  A large-scale trust-region approach to the regularization of discrete ill-posed problems , 1999 .

[6]  W. Beyn,et al.  Chapter 4 – Numerical Continuation, and Computation of Normal Forms , 2002 .

[7]  Jorge J. Moré,et al.  Computing a Trust Region Step , 1983 .

[8]  G. Golub,et al.  Quadratically constrained least squares and quadratic problems , 1991 .

[9]  William W. Symes,et al.  Duality for Inverse Problems in Wave Propagation , 1997 .

[10]  T. Steihaug The Conjugate Gradient Method and Trust Regions in Large Scale Optimization , 1983 .

[11]  Misha Elena Kilmer,et al.  Recycling Subspace Information for Diffuse Optical Tomography , 2005, SIAM J. Sci. Comput..

[12]  Heinrich Voss,et al.  A FAST ALGORITHM FOR SOLVING REGULARIZED TOTAL LEAST SQUARE S PROBLEMS , 2008 .

[13]  Rosemary A. Renaut,et al.  Efficient Algorithms for Solution of Regularized Total Least Squares , 2005, SIAM J. Matrix Anal. Appl..

[14]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM Rev..

[15]  G. Golub,et al.  Regularized Total Least Squares Based on Quadratic Eigenvalue Problem Solvers , 2004 .

[16]  Gene H. Golub,et al.  A Subspace Approximation Method for the Quadratic Eigenvalue Problem , 2005, SIAM J. Matrix Anal. Appl..

[17]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[18]  Eric de Sturler,et al.  Recycling Krylov Subspaces for Sequences of Linear Systems , 2006, SIAM J. Sci. Comput..

[19]  David M. author-Gay Computing Optimal Locally Constrained Steps , 1981 .

[20]  G. Golub,et al.  Subspace iterative methods for eigenvalue problems , 1999 .

[21]  G. Golub,et al.  Eigenvalue perturbation and generalized Krylov subspace method , 1998 .

[22]  Franz Rendl,et al.  A semidefinite framework for trust region subproblems with applications to large scale minimization , 1997, Math. Program..

[23]  Heinrich Voss,et al.  On a quadratic eigenproblem occurring in regularized total least squares , 2007, Comput. Stat. Data Anal..

[24]  William W. Hager,et al.  Global convergence of SSM for minimizing a quadratic over a sphere , 2004, Math. Comput..

[25]  D. Sorensen Newton's method with a model trust region modification , 1982 .

[26]  H. Voss,et al.  Solving regularized total least squares problems based on eigenproblems , 2010 .

[27]  Christian Rey,et al.  Iterative accelerating algorithms with Krylov subspaces for the solution to large-scale nonlinear problems , 2004, Numerical Algorithms.

[28]  Mario Bertero,et al.  Introduction to Inverse Problems in Imaging , 1998 .

[29]  E. Sturler,et al.  Large‐scale topology optimization using preconditioned Krylov subspace methods with recycling , 2007 .

[30]  Danny C. Sorensen,et al.  Minimization of a Large-Scale Quadratic FunctionSubject to a Spherical Constraint , 1997, SIAM J. Optim..

[31]  Henry Wolkowicz,et al.  The trust region subproblem and semidefinite programming , 2004, Optim. Methods Softw..

[32]  William W. Hager,et al.  Minimizing a Quadratic Over a Sphere , 2001, SIAM J. Optim..

[33]  Danny C. Sorensen,et al.  Implicit Application of Polynomial Filters in a k-Step Arnoldi Method , 1992, SIAM J. Matrix Anal. Appl..

[34]  Danny C. Sorensen,et al.  Algorithm 873: LSTRS: MATLAB software for large-scale trust-region subproblems and regularization , 2008, TOMS.

[35]  L G SleijpenGerard,et al.  A Jacobi--Davidson Iteration Method for Linear Eigenvalue Problems , 1996 .

[36]  Heinrich Voss,et al.  Global convergence of RTLSQEP: A solver of regularized total least squares problems via quadratic eigenproblems , 2008 .

[37]  E. Allgower,et al.  Introduction to Numerical Continuation Methods , 1987 .

[38]  Nicholas I. M. Gould,et al.  Solving the Trust-Region Subproblem using the Lanczos Method , 1999, SIAM J. Optim..

[39]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[40]  Danny C. Sorensen,et al.  A Trust-Region Approach to the Regularization of Large-Scale Discrete Forms of Ill-Posed Problems , 2001, SIAM J. Sci. Comput..

[41]  Lothar Reichel,et al.  Tikhonov Regularization with a Solution Constraint , 2004, SIAM J. Sci. Comput..

[42]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM J. Matrix Anal. Appl..

[43]  A. Neumaier RESIDUAL INVERSE ITERATION FOR THE NONLINEAR EIGENVALUE PROBLEM , 1985 .

[44]  H. Voss An Arnoldi Method for Nonlinear Eigenvalue Problems , 2004 .