Fault Models for Quantum Mechanical Switching Networks

In classical test and verification one develops a test set separating a correct circuit from a circuit containing any considered fault. Classical faults are modelled at the logical level by fault models that act on classical states. The stuck fault model, thought of as a lead connected to a power rail or to a ground, is most typically considered. A classical test set complete for the stuck fault model propagates both binary basis states, 0 and 1, through all nodes in a network and is known to detect many physical faults. A classical test set complete for the stuck fault model allows all circuit nodes to be completely tested and verifies the function of many gates. It is natural to ask if one may adapt any of the known classical methods to test quantum circuits. Of course, classical fault models do not capture all the logical failures found in quantum circuits. The first obstacle faced when using methods from classical test is developing a set of realistic quantum-logical fault models (a question which we address, but will likely remain largely open until the advent of the first quantum computer). Developing fault models to abstract the test problem away from the device level motivated our study. Several results are established. First, we describe typical modes of failure present in the physical design of quantum circuits. From this we develop fault models for quantum binary quantum circuits that enable testing at the logical level. The application of these fault models is shown by adapting the classical test set generation technique known as constructing a fault table to generate quantum test sets. A test set developed using this method will detect each of the considered faults.

[1]  K. B. Whaley,et al.  Effects of a random noisy oracle on search algorithm complexity , 2003, quant-ph/0304138.

[2]  Subhash Kak The Initialization Problem in Quantum Computing , 1998 .

[3]  M. Mosca,et al.  APPROXIMATE QUANTUM COUNTING ON AN NMR ENSEMBLE QUANTUM COMPUTER , 1999 .

[4]  I. Chuang,et al.  Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance , 2001, Nature.

[5]  Dorit Aharonov,et al.  Fault-tolerant Quantum Computation with Constant Error Rate * , 1999 .

[6]  T. Spiller,et al.  Effects of noise on quantum error correction algorithms , 1996, quant-ph/9612047.

[7]  Steven T. Flammia,et al.  Q-circuit Tutorial , 2004 .

[8]  Colin P. Williams,et al.  Explorations in quantum computing , 1997 .

[9]  Stefano Bettelli Quantitative model for the effective decoherence of a quantum computer with imperfect unitary operations , 2004 .

[10]  John Preskill,et al.  Quantum information and precision measurement , 1999, quant-ph/9904021.

[11]  N. Langford,et al.  Distance measures to compare real and ideal quantum processes (14 pages) , 2004, quant-ph/0408063.

[12]  Isaac L. Chuang,et al.  Toward Quantum Computation: A Five-Qubit Quantum Processor , 2001, IEEE Micro.

[13]  Bruce M. Boghosian,et al.  From Dirac to Diffusion: Decoherence in Quantum Lattice Gases , 2005, Quantum Inf. Process..

[14]  Lov K. Grover A different kind of quantum search , 2005, quant-ph/0503205.

[15]  J. A. Jones,et al.  Implementation of a quantum algorithm on a nuclear magnetic resonance quantum computer , 1998, quant-ph/9801027.

[16]  Jonathan A. Jones,et al.  Implementation of a quantum search algorithm on a quantum computer , 1998, Nature.

[17]  David P. DiVincenzo,et al.  Book review on quantum computation and quantum information , 2001, Quantum Inf. Comput..

[18]  J. A. Jones,et al.  Tackling systematic errors in quantum logic gates with composite rotations , 2003 .

[19]  A. G. White,et al.  Ancilla-assisted quantum process tomography. , 2003, Physical review letters.

[20]  Marek A. Perkowski,et al.  The Cost of Quantum Gate Primitives , 2006, J. Multiple Valued Log. Soft Comput..

[21]  Debbie W. Leung,et al.  Realization of quantum process tomography in NMR , 2000, quant-ph/0012032.

[22]  Isaac L. Chuang,et al.  Liquid State NMR Quantum Computing , 2001 .

[23]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[24]  Seth Copen Goldstein,et al.  Nano, quantum, and molecular computing: are we ready for the validation and test challenges? , 2003, Eighth IEEE International High-Level Design Validation and Test Workshop.

[25]  A. Steane Quantum computing with trapped ions, atoms and light , 2001 .

[26]  Debbie W. Leung,et al.  Towards Robust Quantum Computation , 2000, ArXiv.

[27]  Gerhard W. Dueck,et al.  Quantum circuit simplification using templates , 2005, Design, Automation and Test in Europe.

[28]  G M D'Ariano,et al.  Quantum tomography for measuring experimentally the matrix elements of an arbitrary quantum operation. , 2001, Physical review letters.

[29]  A. J. Short,et al.  Fidelity of single qubit maps , 2002 .

[30]  J. A. Jones,et al.  Use of composite rotations to correct systematic errors in NMR quantum computation , 1999, quant-ph/9911072.

[31]  John P. Hayes,et al.  Fault testing for reversible circuits , 2004, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[32]  Edward J. McCluskey,et al.  Stuck-fault tests vs. actual defects , 2000, Proceedings International Test Conference 2000 (IEEE Cat. No.00CH37159).

[33]  E. Knill,et al.  Introduction to Quantum Error Correction , 2002 .

[34]  Martin Lukac,et al.  Test generation and fault localization for quantum circuits , 2005, 35th International Symposium on Multiple-Valued Logic (ISMVL'05).

[35]  William J. Munro,et al.  On the measurement of qubits , 2005 .

[36]  D. Deutsch Quantum computational networks , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[37]  M. Grajcar,et al.  Superconducting quantum storage and processing , 2004, 2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519).

[38]  Marek Perkowski,et al.  ATPG for reversible circuits using technology−related fault models , 2005 .

[39]  William H. Kautz Automatic fault detection in combinational switching networks , 1961, SWCT.

[40]  T. Ralph,et al.  Quantum process tomography of a controlled-NOT gate. , 2004, Physical review letters.

[41]  John P. Hayes,et al.  Graph-based simulation of quantum computation in the density matrix representation , 2004, SPIE Defense + Commercial Sensing.

[42]  Douglas V. Hall,et al.  A Minimal Universal Test Set for Self-Test of EXOR-Sum-of-Products Circuits , 2000, IEEE Trans. Computers.

[43]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[44]  J. A. Jones,et al.  Quantum logic gates and nuclear magnetic resonance pulse sequences. , 1998, Journal of magnetic resonance.

[45]  Jonathan A. Jones Nuclear Magnetic Resonance Quantum Computation , 2004 .

[46]  Michele Mosca,et al.  Quantum Computer Algorithms , 2003 .

[47]  Isaac L. Chuang,et al.  Prescription for experimental determination of the dynamics of a quantum black box , 1997 .

[48]  William H. Kautz Testing for Faults in Combinational Cellular Logic Arrays , 1967, SWAT.

[49]  Michael A. Nielsen,et al.  Simple operational interpretation of the fidelity of mixed states , 2002 .

[50]  Peter W. Shor,et al.  Fault-tolerant quantum computation , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[51]  Preparing high purity initial states for nuclear magnetic resonance quantum computing. , 2003, Physical review letters.

[52]  Lov K. Grover,et al.  Quantum error correction of systematic errors using a quantum search framework , 2005 .

[53]  R. Schumann Quantum Information Theory , 2000, quant-ph/0010060.

[54]  C. Khetrapal,et al.  Advances in NMR , 1995 .

[55]  Jacob D. Biamonte,et al.  Testing a Quantum Computer , 2004 .

[56]  Quantum Computation with NMR , 2004 .

[57]  T. Ralph,et al.  Demonstration of an all-optical quantum controlled-NOT gate , 2003, Nature.

[58]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[59]  Li Xiao,et al.  Error tolerance in an NMR implementation of Grover’s fixed-point quantum search algorithm , 2005 .

[60]  T.C. Ralph,et al.  Quantum gate characterization in an extended Hilbert space , 2005, 2005 Quantum Electronics and Laser Science Conference.

[61]  John P. Hayes,et al.  Testing for missing-gate faults in reversible circuits , 2004, 13th Asian Test Symposium.

[62]  E. Knill,et al.  Resilient quantum computation: error models and thresholds , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[63]  A. Harrow,et al.  Robustness of quantum gates in the presence of noise , 2003, quant-ph/0301108.

[64]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[65]  M. Nielsen A simple formula for the average gate fidelity of a quantum dynamical operation [rapid communication] , 2002, quant-ph/0205035.

[66]  Jeremy L O'Brien,et al.  Measuring two-qubit gates , 2007 .

[67]  Jonathan A. Jones,et al.  Implementation of a Quantum Search Algorithm on a Nuclear Magnetic Resonance Quantum Computer , 1998 .

[68]  Wojciech H. Zurek,et al.  Reversibility and stability of information processing systems , 1984 .

[69]  Dorit Aharonov,et al.  Fault-tolerant quantum computation with constant error , 1997, STOC '97.

[70]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[71]  E Knill,et al.  Efficient refocusing of one-spin and two-spin interactions for NMR quantum computation. , 1999, Journal of magnetic resonance.

[72]  Lov K. Grover,et al.  Fixed-point quantum search. , 2005, Physical review letters.