Adaptive Wavelet Methods

Wavelet bases, initially introduced as a tool for signal and image processing, have rapidly obtained recognition in many different application fields. In this lecture notes we will describe some of the interesting properties that such functions display and we will illustrate how such properties (and in particular the simultaneous good localization of the basis functions in both space and frequency) allow to devise several adaptive solution strategies for partial differential equations.While some of such strategies are based mostly on heuristic arguments, for some other a complete rigorous justification and analysis of convergence and computational complexity is available.

[1]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[2]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[3]  Gilles Deslauriers,et al.  Symmetric iterative interpolation processes , 1989 .

[4]  P. Lemarié-Rieusset Fonctions à support compact dans les analyses multi-résoIutions , 1991 .

[5]  Roger Temam,et al.  Incremental unknowns for solving partial differential equations , 1991 .

[6]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[7]  C. Micchelli,et al.  Using the refinement equation for evaluating integrals of wavelets , 1993 .

[8]  I. Daubechies,et al.  Wavelets on the Interval and Fast Wavelet Transforms , 1993 .

[9]  Naoki Saito,et al.  Multiresolution representations using the autocorrelation functions of compactly supported wavelets , 1993, IEEE Trans. Signal Process..

[10]  Silvia Bertoluzza,et al.  A dynamically adaptive wavelet method for solving partial differential equations , 1994 .

[11]  Silvia Bertoluzza A posteriori error estimates for the wavelet Galerkin method , 1995 .

[12]  W. Dahmen Stability of Multiscale Transformations. , 1995 .

[13]  Adaptive wavelet collocation for nonlinear BVPs , 1996 .

[14]  O. Vasilyev,et al.  A Dynamically Adaptive Multilevel Wavelet Collocation Method for Solving Partial Differential Equations in a Finite Domain , 1996 .

[15]  S. Bertoluzza,et al.  A Wavelet Collocation Method for the Numerical Solution of Partial Differential Equations , 1996 .

[16]  Silvia Bertoluzza Adaptive wavelet collocation method for the solution of Burgers equation , 1996 .

[17]  Silvia Bertoluzza An adaptive collocation method based on interpolating wavelets , 1997 .

[18]  Wolfgang Dahmen,et al.  Stable multiscale bases and local error estimation for elliptic problems , 1997 .

[19]  Claudio Canuto,et al.  The wavelet element method. Part II: Realization and additional features in 2D and 3D , 1997 .

[20]  W. Dahmen,et al.  Wavelets with Complementary Boundary Conditions — Function Spaces on the Cube , 1998 .

[21]  David A. Yuen,et al.  Modeling of compaction driven flow in poro‐viscoelastic medium using adaptive wavelet collocation method , 1998 .

[22]  Wolfgang Dahmen,et al.  Composite wavelet bases for operator equations , 1999, Math. Comput..

[23]  Wolfgang Dahmen,et al.  Element-by-Element Construction of Wavelets Satisfying Stability and Moment Conditions , 1999, SIAM J. Numer. Anal..

[24]  R. DeVore,et al.  Multiscale decompositions on bounded domains , 2000 .

[25]  Albert Cohen,et al.  Wavelet adaptive method for second order elliptic problems: boundary conditions and domain decomposition , 2000, Numerische Mathematik.

[26]  Silvia Bertoluzza,et al.  On the adaptive computation of integrals of wavelets , 2000 .

[27]  Wolfgang Dahmen,et al.  Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..

[28]  O. Christensen An introduction to frames and Riesz bases , 2002 .

[29]  Wolfgang Dahmen,et al.  Adaptive Wavelet Methods II—Beyond the Elliptic Case , 2002, Found. Comput. Math..

[30]  Wolfgang Dahmen,et al.  Wavelet Least Squares Methods for Boundary Value Problems , 2001, SIAM J. Numer. Anal..

[31]  Marco Verani,et al.  A NONLINEAR RICHARDSON ALGORITHM FOR THE SOLUTION OF ELLIPTIC PDE'S , 2003 .

[32]  Silvia Bertoluzza,et al.  Convergence of a nonlinear wavelet algorithm for the solution of PDEs , 2003, Appl. Math. Lett..

[33]  A. Cohen Numerical Analysis of Wavelet Methods , 2003 .

[34]  Oleg V. Vasilyev,et al.  An Adaptive Wavelet Collocation Method for Fluid-Structure Interaction at High Reynolds Numbers , 2005, SIAM J. Sci. Comput..

[35]  A. Ron Review of An introduction to Frames and Riesz bases, applied and numerical Harmonic analysis by Ole Christensen Birkhäuser, Basel, 2003 , 2005 .

[36]  Rob P. Stevenson,et al.  An optimal adaptive wavelet method without coarsening of the iterands , 2006, Math. Comput..