A characterization of $$L_{2}$$L2 mixing and hypercontractivity via hitting times and maximal inequalities

[1]  Yuval Peres,et al.  Sensitivity of Mixing Times in Eulerian Digraphs , 2016, SIAM J. Discret. Math..

[2]  Y. Peres,et al.  The power of averaging at two consecutive time steps: Proof of a mixing conjecture by Aldous and Fill , 2015, 1508.04836.

[3]  Yuval Peres,et al.  Surprise probabilities in Markov chains , 2014, SODA.

[4]  On sensitivity of uniform mixing times , 2016, 1607.01672.

[5]  P. Cattiaux,et al.  Hitting times, functional inequalities, lyapunov conditions and uniform ergodicity , 2016, 1604.06336.

[6]  Y. Peres,et al.  Characterization of cutoff for reversible Markov chains , 2014, SODA.

[7]  Jian Ding,et al.  Sensitivity of mixing times , 2013 .

[8]  Elchanan Mossel,et al.  On Reverse Hypercontractivity , 2011, Geometric and Functional Analysis.

[9]  V. Climenhaga Markov chains and mixing times , 2013 .

[10]  Perla Sousi,et al.  Mixing Times are Hitting Times of Large Sets , 2011 .

[11]  G. Kozma On the precision of the spectral prole , 2007 .

[12]  G. Kozma On the precision of the spectral profile , 2007, 0709.0112.

[13]  S. Bobkov,et al.  Modified Logarithmic Sobolev Inequalities in Discrete Settings , 2006 .

[14]  P. Tetali,et al.  Mixing Time Bounds via the Spectral Profile , 2005, math/0505690.

[15]  Alison L Gibbs,et al.  On Choosing and Bounding Probability Metrics , 2002, math/0209021.

[16]  L. Saloff-Coste,et al.  Lectures on finite Markov chains , 1997 .

[17]  P. Diaconis,et al.  LOGARITHMIC SOBOLEV INEQUALITIES FOR FINITE MARKOV CHAINS , 1996 .

[18]  Arak M. Mathai,et al.  Basic Concepts in Information Theory and Statistics: Axiomatic Foundations and Applications , 1975 .

[19]  S. Kullback,et al.  A lower bound for discrimination information in terms of variation (Corresp.) , 1967, IEEE Trans. Inf. Theory.

[20]  Norton Starr,et al.  Operator limit theorems , 1966 .