Core Sampling Framework for Pixel Classification

The intermediate map responses of a Convolutional Neural Network (CNN) contain contextual knowledge about its input. In this paper, we present a framework that uses these activation maps from several layers of a CNN as features to a Deep Belief Network (DBN) using transfer learning to provide an understanding of an input image. We create a representation of these features and the training data and use them to extract more information from an image at the pixel level, hence gaining understanding of the whole image. We experimentally demonstrate the usefulness of our framework using a pretrained model and use a DBN to perform segmentation on the BAERI dataset of Synthetic Aperture Radar (SAR) imagery and the CAMVID dataset with a relatively smaller training dataset.

[1]  Edward H. Adelson,et al.  The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..

[2]  Yoshua Bengio,et al.  How transferable are features in deep neural networks? , 2014, NIPS.

[3]  Edward H. Adelson,et al.  PYRAMID METHODS IN IMAGE PROCESSING. , 1984 .

[4]  Bo Du,et al.  Unsupervised transfer learning for target detection from hyperspectral images , 2013, Neurocomputing.

[5]  Seunghoon Hong,et al.  Learning Deconvolution Network for Semantic Segmentation , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[6]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Philip H. S. Torr,et al.  What, Where and How Many? Combining Object Detectors and CRFs , 2010, ECCV.

[8]  Jitendra Malik,et al.  Volumetric Semantic Segmentation Using Pyramid Context Features , 2013, 2013 IEEE International Conference on Computer Vision.

[9]  Ruigang Yang,et al.  Semantic Segmentation of Urban Scenes Using Dense Depth Maps , 2010, ECCV.

[10]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[11]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[12]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[13]  Kannan,et al.  ON IMAGE SEGMENTATION TECHNIQUES , 2022 .

[14]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[15]  Gavriel Salomon,et al.  T RANSFER OF LEARNING , 1992 .

[16]  Dorin Comaniciu,et al.  Robust analysis of feature spaces: color image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[17]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[18]  Rob Fergus,et al.  Visualizing and Understanding Convolutional Networks , 2013, ECCV.

[19]  John Salvatier,et al.  Theano: A Python framework for fast computation of mathematical expressions , 2016, ArXiv.

[20]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[21]  智一 吉田,et al.  Efficient Graph-Based Image Segmentationを用いた圃場図自動作成手法の検討 , 2014 .

[22]  Andrew Blake,et al.  "GrabCut" , 2004, ACM Trans. Graph..

[23]  Haipeng Wang,et al.  SAR target recognition based on deep learning , 2014, 2014 International Conference on Data Science and Advanced Analytics (DSAA).

[24]  Marie-Pierre Jolly,et al.  Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[25]  Jitendra Malik,et al.  Hypercolumns for object segmentation and fine-grained localization , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[26]  Qiang Yang,et al.  A Survey on Transfer Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.

[27]  Harris Drucker,et al.  Learning algorithms for classification: A comparison on handwritten digit recognition , 1995 .

[28]  Trevor Darrell,et al.  Fully Convolutional Networks for Semantic Segmentation , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Jitendra Malik,et al.  Region-Based Convolutional Networks for Accurate Object Detection and Segmentation , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Roberto Cipolla,et al.  Semantic object classes in video: A high-definition ground truth database , 2009, Pattern Recognit. Lett..

[31]  Yoshua. Bengio,et al.  Learning Deep Architectures for AI , 2007, Found. Trends Mach. Learn..

[32]  J. Jouzel,et al.  A 150,000-year climatic record from Antarctic ice , 1985, Nature.

[33]  Roberto Cipolla,et al.  Segmentation and Recognition Using Structure from Motion Point Clouds , 2008, ECCV.

[34]  Roberto Cipolla,et al.  SegNet: A Deep Convolutional Encoder-Decoder Architecture for Robust Semantic Pixel-Wise Labelling , 2015, CVPR 2015.

[35]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[36]  N. O. Lotter,et al.  Sampling and flotation testing of Sudbury Basin drill core for process mineralogy modelling , 2003 .

[37]  Yoshua Bengio,et al.  Greedy Layer-Wise Training of Deep Networks , 2006, NIPS.