Wnt signaling, stem cells, and cancer of the gastrointestinal tract.

The Wnt signaling pathway was originally uncovered as one of the prototype developmental signaling cascades in invertebrates as well as in vertebrates. The first indication that Wnt signaling also plays a role in the adult animal came from the study of the intestine of Tcf-4 (Tcf7L2) knockout mice. The gastrointestinal epithelium continuously self-renews over the lifetime of an organism and is, in fact, the most rapidly self-renewing tissue of the mammalian body. Recent studies indicate that Wnt signaling plays a central role in the biology of gastrointestinal stem cells. Furthermore, mutational activation of the Wnt cascade is the principle cause of colon cancer.

[1]  J. Epstein,et al.  Interconversion Between Intestinal Stem Cell Populations in Distinct Niches , 2011, Science.

[2]  A. Oudenaarden,et al.  Single-molecule transcript counting of stem-cell markers in the mouse intestine , 2011, Nature Cell Biology.

[3]  O. Klein,et al.  A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable , 2011, Nature.

[4]  Hans Clevers,et al.  Isolation and in vitro expansion of human colonic stem cells , 2011, Nature Medicine.

[5]  Hans Clevers,et al.  Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling , 2011, Nature.

[6]  Q. Lin,et al.  R-spondins function as ligands of the orphan receptors LGR4 and LGR5 to regulate Wnt/β-catenin signaling , 2011, Proceedings of the National Academy of Sciences.

[7]  T. Van Loy,et al.  Lgr4 is required for Paneth cell differentiation and maintenance of intestinal stem cells ex vivo , 2011, EMBO reports.

[8]  H. Clevers,et al.  Lgr5 intestinal stem cells have high telomerase activity and randomly segregate their chromosomes , 2011, The EMBO journal.

[9]  Hans Clevers,et al.  Distinct ATOH1 and Neurog3 requirements define tuft cells as a new secretory cell type in the intestinal epithelium , 2011, The Journal of cell biology.

[10]  K. Akashi,et al.  The Wnt agonist R-spondin1 regulates systemic graft-versus-host disease by protecting intestinal stem cells , 2011, The Journal of experimental medicine.

[11]  Hans Clevers,et al.  Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts , 2011, Nature.

[12]  Camilla A. Richmond,et al.  Mouse telomerase reverse transcriptase (mTert) expression marks slowly cycling intestinal stem cells , 2010, Proceedings of the National Academy of Sciences.

[13]  H. Clevers,et al.  Tissue-resident adult stem cell populations of rapidly self-renewing organs. , 2010, Cell stem cell.

[14]  Hans Clevers,et al.  Intestinal Crypt Homeostasis Results from Neutral Competition between Symmetrically Dividing Lgr5 Stem Cells , 2010, Cell.

[15]  H. Clevers,et al.  Leucine-rich repeat-containing G-protein-coupled receptors as markers of adult stem cells. , 2010, Gastroenterology.

[16]  Louis Vermeulen,et al.  Wnt activity defines colon cancer stem cells and is regulated by the microenvironment , 2010, Nature Cell Biology.

[17]  H. Clevers,et al.  Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. , 2010, Cell stem cell.

[18]  C. Guha,et al.  Protective Role of R-spondin1, an Intestinal Stem Cell Growth Factor, against Radiation-Induced Gastrointestinal Syndrome in Mice , 2009, PloS one.

[19]  D. Winton,et al.  Mutated K‐rasAsp12 promotes tumourigenesis in ApcMin mice more in the large than the small intestines, with synergistic effects between K‐ras and Wnt pathways , 2009, International journal of experimental pathology.

[20]  M. Ghiani,et al.  LGR5 deficiency deregulates Wnt signaling and leads to precocious Paneth cell differentiation in the fetal intestine. , 2009, Developmental biology.

[21]  H. Clevers,et al.  OLFM4 is a robust marker for stem cells in human intestine and marks a subset of colorectal cancer cells. , 2009, Gastroenterology.

[22]  H. Clevers,et al.  Prominin-1/CD133 marks stem cells and early progenitors in mouse small intestine. , 2009, Gastroenterology.

[23]  H. Clevers,et al.  Single Lgr5 stem cells build crypt–villus structures in vitro without a mesenchymal niche , 2009, Nature.

[24]  Hans Clevers,et al.  Transcription Factor Achaete Scute-Like 2 Controls Intestinal Stem Cell Fate , 2009, Cell.

[25]  Hans Clevers,et al.  Crypt stem cells as the cells-of-origin of intestinal cancer , 2009, Nature.

[26]  Andreas Trumpp,et al.  Epithelial Pten is dispensable for intestinal homeostasis but suppresses adenoma development and progression after Apc mutation , 2008, Nature Genetics.

[27]  H. Augustin,et al.  The Wnt signaling regulator R-spondin 3 promotes angioblast and vascular development , 2008, Development.

[28]  R. Richardson,et al.  Prominin1 marks intestinal stem cells that are susceptible to neoplastic transformation , 2008, Nature.

[29]  D. Stolz,et al.  A stochastic model for cancer stem cell origin in metastatic colon cancer. , 2008, Cancer research.

[30]  M. Capecchi,et al.  Bmi1 is expressed in vivo in intestinal stem cells , 2008, Nature Genetics.

[31]  H. Saya,et al.  Activated macrophages promote Wnt signalling through tumour necrosis factor-α in gastric tumour cells , 2008, The EMBO journal.

[32]  E. Verwiel,et al.  Deletion of the WNT target and cancer stem cell marker CD44 in Apc(Min/+) mice attenuates intestinal tumorigenesis. , 2008, Cancer research.

[33]  K. Pan,et al.  Mutations in components of the Wnt signaling pathway in gastric cancer. , 2008, World journal of gastroenterology.

[34]  Laura C. Greaves,et al.  Mechanisms of field cancerization in the human stomach: the expansion and spread of mutated gastric stem cells. , 2008, Gastroenterology.

[35]  J. Merchant,et al.  Prospective identification of a multilineage progenitor in murine stomach epithelium. , 2007, Gastroenterology.

[36]  Michal A. Kurowski,et al.  Transcriptome Profile of Human Colorectal Adenomas , 2007, Molecular Cancer Research.

[37]  H. Clevers,et al.  Identification of stem cells in small intestine and colon by marker gene Lgr5 , 2007, Nature.

[38]  Suet Yi Leung,et al.  Gene expression patterns of human colon tops and basal crypts and BMP antagonists as intestinal stem cell niche factors , 2007, Proceedings of the National Academy of Sciences.

[39]  Joerg Huelsken,et al.  Wnt/β-Catenin Is Essential for Intestinal Homeostasis and Maintenance of Intestinal Stem Cells , 2007, Molecular and Cellular Biology.

[40]  Philippe Blache,et al.  Sox9 regulates cell proliferation and is required for Paneth cell differentiation in the intestinal epithelium , 2007, The Journal of cell biology.

[41]  M. Giel-Moloney,et al.  Enteroendocrine precursors differentiate independently of Wnt and form serotonin expressing adenomas in response to active β-catenin , 2007, Proceedings of the National Academy of Sciences.

[42]  Michael F. Clarke,et al.  Phenotypic characterization of human colorectal cancer stem cells , 2007, Proceedings of the National Academy of Sciences.

[43]  H. Tomita,et al.  Development of gastric tumors in Apc(Min/+) mice by the activation of the beta-catenin/Tcf signaling pathway. , 2007, Cancer research.

[44]  Julie A. Wilkins,et al.  Myc deletion rescues Apc deficiency in the small intestine , 2007, Nature.

[45]  Riccardo Fodde,et al.  Wnt/β-catenin signaling in cancer stemness and malignant behavior , 2007 .

[46]  H. Clevers,et al.  The Intestinal Wnt/TCF Signature. , 2007, Gastroenterology.

[47]  J. Dick,et al.  A human colon cancer cell capable of initiating tumour growth in immunodeficient mice , 2007, Nature.

[48]  L. Ricci-Vitiani,et al.  Identification and expansion of human colon-cancer-initiating cells , 2007, Nature.

[49]  T. Tsukamoto,et al.  Carcinogenesis in mouse stomach by simultaneous activation of the Wnt signaling and prostaglandin E2 pathway. , 2006, Gastroenterology.

[50]  R. Fodde,et al.  APC and Oncogenic KRAS Are Synergistic in Enhancing Wnt Signaling in Intestinal Tumor Formation and Progression , 2006 .

[51]  Hans Clevers,et al.  SOX9 is required for the differentiation of paneth cells in the intestinal epithelium. , 2006, Gastroenterology.

[52]  H. Körner,et al.  Microsatellite instability in colorectal cancer , 2006, The British journal of surgery.

[53]  Max S Wicha,et al.  Cancer stem cells: an old idea--a paradigm shift. , 2006, Cancer research.

[54]  M. Taketo,et al.  The threshold level of adenomatous polyposis coli protein for mouse intestinal tumorigenesis. , 2005, Cancer research.

[55]  Takeshi Oshima,et al.  Mitogenic Influence of Human R-Spondin1 on the Intestinal Epithelium , 2005, Science.

[56]  Louise Howard,et al.  Cellular inheritance of a Cre‐activated reporter gene to determine paneth cell longevity in the murine small intestine , 2005, Developmental dynamics : an official publication of the American Association of Anatomists.

[57]  Hans Clevers,et al.  Expression pattern of Wnt signaling components in the adult intestine. , 2005, Gastroenterology.

[58]  C. Flanagan,et al.  A GPCR That Is Not “DRY” , 2005, Molecular Pharmacology.

[59]  T. Pawson,et al.  EphB receptor activity suppresses colorectal cancer progression , 2005, Nature.

[60]  H. Clevers,et al.  Wnt signalling in stem cells and cancer , 2005, Nature.

[61]  H. Clevers,et al.  Wnt signalling induces maturation of Paneth cells in intestinal crypts , 2005, Nature Cell Biology.

[62]  Pierre Laurent-Puig,et al.  Crypt-restricted proliferation and commitment to the Paneth cell lineage following Apc loss in the mouse intestine , 2005, Development.

[63]  N. Wright,et al.  Intestinal stem cells , 2005, Journal of cellular and molecular medicine.

[64]  D. Bouley,et al.  Neonatal Lethality of LGR5 Null Mice Is Associated with Ankyloglossia and Gastrointestinal Distension , 2004, Molecular and Cellular Biology.

[65]  C. Niehrs,et al.  R-Spondin2 is a secreted activator of Wnt/beta-catenin signaling and is required for Xenopus myogenesis. , 2004, Developmental cell.

[66]  Ian P Newton,et al.  Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. , 2004, Genes & development.

[67]  Mitsuru Sasako,et al.  Focus on gastric cancer. , 2004, Cancer cell.

[68]  Pauline Chu,et al.  Essential requirement for Wnt signaling in proliferation of adult small intestine and colon revealed by adenoviral expression of Dickkopf-1 , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[69]  Laura C. Greaves,et al.  Mitochondrial DNA mutations in human colonic crypt stem cells. , 2003, The Journal of clinical investigation.

[70]  Hans Clevers,et al.  Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. , 2003, Genes & development.

[71]  R. Fodde,et al.  Apc modulates embryonic stem-cell differentiation by controlling the dosage of β-catenin signaling , 2002, Nature Genetics.

[72]  Tony Pawson,et al.  β-Catenin and TCF Mediate Cell Positioning in the Intestinal Epithelium by Controlling the Expression of EphB/EphrinB , 2002, Cell.

[73]  Hans Clevers,et al.  The β-Catenin/TCF-4 Complex Imposes a Crypt Progenitor Phenotype on Colorectal Cancer Cells , 2002, Cell.

[74]  M. Bjerknes,et al.  Multipotential stem cells in adult mouse gastric epithelium. , 2002, American journal of physiology. Gastrointestinal and liver physiology.

[75]  J. Truman,et al.  Mutations in the Drosophila glycoprotein hormone receptor, rickets, eliminate neuropeptide-induced tanning and selectively block a stereotyped behavioral program. , 2002, The Journal of experimental biology.

[76]  C. Fenoglio-Preiser,et al.  beta-Catenin mutation is a frequent cause of Wnt pathway activation in gastric cancer. , 2002, Cancer research.

[77]  R. Fodde,et al.  The 'just-right' signaling model: APC somatic mutations are selected based on a specific level of activation of the beta-catenin signaling cascade. , 2002, Human molecular genetics.

[78]  Andrew P McMahon,et al.  Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse. , 2002, Developmental biology.

[79]  H. Clevers,et al.  Mutations in the APC tumour suppressor gene cause chromosomal instability , 2001, Nature Cell Biology.

[80]  K. Kinzler,et al.  Top-down morphogenesis of colorectal tumors , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[81]  David I. Smith,et al.  Mutations in AXIN2 cause colorectal cancer with defective mismatch repair by activating β-catenin/TCF signalling , 2000, Nature Genetics.

[82]  O. Sansom,et al.  Dysregulated expression of β-catenin marks early neoplastic change in Apc mutant mice, but not all lesions arising in Msh2 deficient mice , 1999, Oncogene.

[83]  S. H. Lee,et al.  Frequent somatic mutations of the beta-catenin gene in intestinal-type gastric cancer. , 1999, Cancer research.

[84]  Frank McCormick,et al.  β-Catenin regulates expression of cyclin D1 in colon carcinoma cells , 1999, Nature.

[85]  S. Karam Lineage commitment and maturation of epithelial cells in the gut. , 1999, Frontiers in bioscience : a journal and virtual library.

[86]  H. Esumi,et al.  Lineage and clonal development of gastric glands. , 1998, Developmental biology.

[87]  A. Sparks,et al.  Identification of c-MYC as a target of the APC pathway. , 1998, Science.

[88]  Hans Clevers,et al.  Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4 , 1998, Nature Genetics.

[89]  R. Nusse,et al.  Wnt signaling: a common theme in animal development. , 1997, Genes & development.

[90]  R. W. Lucky,et al.  When is dumb smart , 1997 .

[91]  M. Taketo,et al.  Morphological and molecular processes of polyp formation in Apc(delta716) knockout mice. , 1997, Cancer research.

[92]  Hans Clevers,et al.  Activation of β-Catenin-Tcf Signaling in Colon Cancer by Mutations in β-Catenin or APC , 1997, Science.

[93]  K. Kinzler,et al.  Constitutive Transcriptional Activation by a β-Catenin-Tcf Complex in APC−/− Colon Carcinoma , 1997, Science.

[94]  K. Kinzler,et al.  Lessons from Hereditary Colorectal Cancer , 1996, Cell.

[95]  Paul Polakis,et al.  Binding of GSK3β to the APC-β-Catenin Complex and Regulation of Complex Assembly , 1996, Science.

[96]  M Oshima,et al.  Loss of Apc heterozygosity and abnormal tissue building in nascent intestinal polyps in mice carrying a truncated Apc gene. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[97]  R Fodde,et al.  A targeted chain-termination mutation in the mouse Apc gene results in multiple intestinal tumors. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[98]  C. P. Leblond,et al.  Dynamics of epithelial cells in the corpus of the mouse stomach. II. Outward migration of pit cells , 1993, The Anatomical record.

[99]  C. P. Leblond,et al.  Dynamics of epithelial cells in the corpus of the mouse stomach. III. Inward migration of neck cells followed by progressive transformation into zymogenic cells , 1993, The Anatomical record.

[100]  S. Karam Dynamics of epithelial cells in the corpus of the mouse stomach. IV. Bidirectional migration of parietal cells ending in their gradual degeneration and loss , 1993, The Anatomical record.

[101]  Y. Nakamura,et al.  Somatic mutation of the APC gene in gastric cancer: frequent mutations in very well differentiated adenocarcinoma and signet-ring cell carcinoma. , 1992, Human molecular genetics.

[102]  F. Giardiello,et al.  The risk of upper gastrointestinal cancer in familial adenomatous polyposis. , 1992, Gastroenterology.

[103]  K. Kinzler,et al.  Erratum: Multiple Intestinal Neoplasia Caused By a Mutation in the Murine Homolog of the APC Gene , 1992, Science.

[104]  C. P. Leblond,et al.  Identifying and counting epithelial cell types in the “corpus” of the mouse stomach , 1992, The Anatomical record.

[105]  K. Kinzler,et al.  Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. , 1991, Science.

[106]  K. Kinzler,et al.  Identification of a gene located at chromosome 5q21 that is mutated in colorectal cancers. , 1991, Science.

[107]  M. Surani,et al.  Gastric endocrine cells share a clonal origin with other gut cell lineages. , 1990, Development.

[108]  D. Winton,et al.  Stem-cell organization in mouse small intestine , 1990, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[109]  B. Vogelstein,et al.  A genetic model for colorectal tumorigenesis , 1990, Cell.

[110]  H. Pitot,et al.  A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. , 1990, Science.

[111]  E. Lee Dynamic histology of the antral epithelium in the mouse stomach: III. Ultrastructure and renewal of pit cells. , 1985, The American journal of anatomy.

[112]  J. Madara Cup cells: structure and distribution of a unique class of epithelial cells in guinea pig, rabbit, and monkey small intestine. , 1982, Gastroenterology.

[113]  C. P. Leblond,et al.  Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian Theory of the origin of the four epithelial cell types. , 1974, The American journal of anatomy.

[114]  C. Potten,et al.  CONTINUOUS LABELLING STUDIES ON MOUSE SKIN AND INTESTINE , 1974, Cell and tissue kinetics.

[115]  S. Lesher,et al.  A quantitative description of the intestinal epithelium of the mouse. , 1970, The American journal of anatomy.

[116]  C. P. Leblond,et al.  Histological Localization of Newly-formed Desoxyribonucleic Acid. , 1948, Science.

[117]  J. Deng,et al.  Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine , 2011, Nature Genetics.

[118]  J. C. Clevers,et al.  EphB activity suppresses colorectal cancer progression , 2005 .

[119]  Jun Yu,et al.  Increased β-catenin mRNA levels and mutational alterations of the APC and β-catenin gene are present in intestinal-type gastric cancer , 2002 .

[120]  H Cheng,et al.  Clonal analysis of mouse intestinal epithelial progenitors. , 1999, Gastroenterology.

[121]  S. Roberts,et al.  The temporal and spatial changes in cell proliferation within the irradiated crypts of the murine small intestine. , 1990, International journal of radiation biology.