An Improved Artificial Jellyfish Search Optimizer for Parameter Identification of Photovoltaic Models

The optimization of photovoltaic (PV) systems relies on the development of an accurate model of the parameter values for the solar/PV generating units. This work proposes a modified artificial jellyfish search optimizer (MJSO) with a novel premature convergence strategy (PCS) to define effectively the unknown parameters of PV systems. The PCS works on preserving the diversity among the members of the population while accelerating the convergence toward the best solution based on two motions: (i) moving the current solution between two particles selected randomly from the population, and (ii) searching for better solutions between the best-so-far one and a random one from the population. To confirm its efficacy, the proposed method is validated on three different PV technologies and is being compared with some of the latest competitive computational frameworks. The numerical simulations and results confirm the dominance of the proposed algorithm in terms of the accuracy of the final results and convergence rate. In addition, to assess the performance of the proposed approach under different operation conditions for the solar cells, two additional PV modules (multi-crystalline and thin-film) are investigated, and the demonstrated scenarios highlight the utility of the proposed MJSO-based methodology.

[1]  Mohamed Abdel-Basset,et al.  Parameter estimation of photovoltaic models using an improved marine predators algorithm , 2021, Energy Conversion and Management.

[2]  Mohamed Abdel-Basset,et al.  Solar photovoltaic parameter estimation using an improved equilibrium optimizer , 2020 .

[3]  Xin-She Yang,et al.  Firefly algorithm with chaos , 2013, Commun. Nonlinear Sci. Numer. Simul..

[4]  Francisco Gordillo,et al.  Parameters identification of PV solar cells and modules using flexible particle swarm optimization algorithm , 2019, Energy.

[5]  Wenyin Gong,et al.  Parameter extraction of solar cell models using repaired adaptive differential evolution , 2013 .

[6]  Xu Chen,et al.  Parameters identification of photovoltaic models using an improved JAYA optimization algorithm , 2017 .

[7]  Ivo Chaves da Silva Junior,et al.  Parameter extraction of photovoltaic models using an enhanced Lévy flight bat algorithm , 2020 .

[8]  Xiong Luo,et al.  Parameter identification of the photovoltaic cell model with a hybrid Jaya-NM algorithm , 2018, Optik.

[9]  Bin Xu,et al.  Teaching–learning–based artificial bee colony for solar photovoltaic parameter estimation , 2018 .

[10]  Ranko Goic,et al.  review of solar photovoltaic technologies , 2011 .

[11]  Hany M. Hasanien,et al.  Parameters estimation of single‐ and multiple‐diode photovoltaic model using whale optimisation algorithm , 2018, IET Renewable Power Generation.

[12]  Manoharan Premkumar,et al.  A new stochastic slime mould optimization algorithm for the estimation of solar photovoltaic cell parameters , 2020 .

[13]  Amir Mohammad Beigi,et al.  Parameter identification for solar cells and module using a Hybrid Firefly and Pattern Search Algorithms , 2018, Solar Energy.

[14]  Seyedali Mirjalili,et al.  SCA: A Sine Cosine Algorithm for solving optimization problems , 2016, Knowl. Based Syst..

[15]  Salah Kamel,et al.  Photovoltaic Cells Parameter Estimation Using an Enhanced Teaching–Learning-Based Optimization Algorithm , 2020, Iranian Journal of Science and Technology, Transactions of Electrical Engineering.

[16]  Jing Zhang,et al.  Winner-leading competitive swarm optimizer with dynamic Gaussian mutation for parameter extraction of solar photovoltaic models , 2020 .

[17]  Wei Wei,et al.  Key Parameter Identification and Optimization of Photovoltaic Power Plants Based on Genetic Algorithm , 2020 .

[18]  Xuehua Zhao,et al.  Evaluation of constraint in photovoltaic models by exploiting an enhanced ant lion optimizer , 2020 .

[19]  Ngoc Son Nguyen,et al.  Parameters extraction of solar cells using modified JAYA algorithm , 2020 .

[20]  Satish Kumar Injeti,et al.  Optimal multilevel thresholding selection for brain MRI image segmentation based on adaptive wind driven optimization , 2018, Measurement.

[21]  Antonino Laudani,et al.  High performing extraction procedure for the one-diode model of a photovoltaic panel from experimental I–V curves by using reduced forms , 2014 .

[22]  Mohamed Abdel-Basset,et al.  An efficient teaching-learning-based optimization algorithm for parameters identification of photovoltaic models: Analysis and validations , 2021 .

[23]  K. Touafek,et al.  Parameters identification of a photovoltaic module in a thermal system using meta-heuristic optimization methods , 2017 .

[24]  Ahmed A. Zaki Diab,et al.  Coyote Optimization Algorithm for Parameters Estimation of Various Models of Solar Cells and PV Modules , 2020, IEEE Access.

[25]  Jing J. Liang,et al.  Classified perturbation mutation based particle swarm optimization algorithm for parameters extraction of photovoltaic models , 2020 .

[26]  Yong Wang,et al.  Parameter estimation of photovoltaic modules using a hybrid flower pollination algorithm , 2017 .

[27]  Pierre Ele,et al.  Enhanced Vibrating Particles System Algorithm for Parameters Estimation of Photovoltaic System , 2019, Journal of Power and Energy Engineering.

[28]  Mohamed Abdel-Basset,et al.  New binary marine predators optimization algorithms for 0–1 knapsack problems , 2020, Computers & Industrial Engineering.

[29]  Rabeh Abbassi,et al.  Parameters identification of photovoltaic cell models using enhanced exploratory salp chains-based approach , 2020, Energy.

[30]  Akash Saxena,et al.  Solar Cell Parameter Extraction by Using Harris Hawks Optimization Algorithm , 2020 .

[31]  Zhigang Jin,et al.  Generalized normal distribution optimization and its applications in parameter extraction of photovoltaic models , 2020 .

[32]  Huiling Chen,et al.  Boosted mutation-based Harris hawks optimizer for parameters identification of single-diode solar cell models , 2020 .

[33]  Anis Sakly,et al.  Particle swarm optimisation with adaptive mutation strategy for photovoltaic solar cell/module parameter extraction , 2018, Energy Conversion and Management.

[34]  Neeraj Kumar,et al.  Energy-Aware Marine Predators Algorithm for Task Scheduling in IoT-Based Fog Computing Applications , 2021, IEEE Transactions on Industrial Informatics.

[35]  Hussein Mohammed Ridha,et al.  Parameters extraction of single and double diodes photovoltaic models using Marine Predators Algorithm and Lambert W function , 2020 .

[36]  N. Jenkins,et al.  A model of PV generation suitable for stability analysis , 2004, IEEE Transactions on Energy Conversion.

[37]  Mohammad Mohammadpour Omran,et al.  Parameter identification of solar cells and fuel cell using improved social spider algorithm , 2020 .

[38]  Chong-yang Liu,et al.  An improved lion swarm optimization for parameters identification of photovoltaic cell models , 2020, Trans. Inst. Meas. Control.

[39]  Jing Liang,et al.  Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models , 2018, Applied Energy.

[40]  Sílvio Mariano,et al.  A new high performance method for determining the parameters of PV cells and modules based on guaranteed convergence particle swarm optimization , 2018 .

[41]  Emre Özer,et al.  A Six Parameter Single Diode Model for Photovoltaic Modules , 2021 .

[42]  R. Sowmya,et al.  A new metaphor-less algorithms for the photovoltaic cell parameter estimation , 2020 .

[43]  Samir Moulahoum,et al.  Extraction of the PV modules parameters with MPP estimation using the modified flower algorithm , 2019, Renewable Energy.

[44]  Zhigang Jin,et al.  Comprehensive learning Jaya algorithm for parameter extraction of photovoltaic models , 2020 .

[45]  T. Easwarakhanthan,et al.  Nonlinear Minimization Algorithm for Determining the Solar Cell Parameters with Microcomputers , 1986 .

[46]  Hany M. Hasanien,et al.  Whale optimisation algorithm for photovoltaic model identification , 2009 .

[47]  Haibin Ouyang,et al.  Parameter Identification for Photovoltaic Models Using an Improved Learning Search Algorithm , 2020, IEEE Access.

[48]  Ramesh Devarapalli,et al.  Parameter extraction of solar photovoltaic module by using a novel hybrid marine predators – success history based adaptive differential evolution algorithm , 2020, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects.

[49]  Vineet Kumar,et al.  PV cell and module efficient parameters estimation using Evaporation Rate based Water Cycle Algorithm , 2017, Swarm Evol. Comput..

[50]  Liang Gao,et al.  Parameter extraction of photovoltaic models using an improved teaching-learning-based optimization , 2019, Energy Conversion and Management.

[51]  Rabeh Abbassi,et al.  An efficient salp swarm-inspired algorithm for parameters identification of photovoltaic cell models , 2019, Energy Conversion and Management.

[52]  Mohamed Abdel-Basset,et al.  An Efficient-Assembler Whale Optimization Algorithm for DNA Fragment Assembly Problem: Analysis and Validations , 2020, IEEE Access.

[53]  Shankar Thawkar A hybrid model using teaching–learning-based optimization and Salp swarm algorithm for feature selection and classification in digital mammography , 2021, J. Ambient Intell. Humaniz. Comput..

[54]  Xuesong Yan,et al.  A hybrid adaptive teaching–learning-based optimization and differential evolution for parameter identification of photovoltaic models , 2020 .

[55]  Diab Mokeddem,et al.  Parameter Extraction of Solar Photovoltaic Models Using Enhanced Levy Flight Based Grasshopper Optimization Algorithm , 2020, Journal of Electrical Engineering & Technology.

[56]  Xuehua Zhao,et al.  Parameters identification of photovoltaic cells and modules using diversification-enriched Harris hawks optimization with chaotic drifts , 2020 .

[57]  N. Tong,et al.  A parameter extraction technique exploiting intrinsic properties of solar cells , 2016 .

[58]  Heng Wang,et al.  Parameter extraction of solar cell models using improved shuffled complex evolution algorithm , 2018, Energy Conversion and Management.

[59]  Zhicong Chen,et al.  Parameters extraction of solar cell models using a modified simplified swarm optimization algorithm , 2017 .

[60]  Jui-Sheng Chou,et al.  A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean , 2021, Appl. Math. Comput..