Radiation Coordinates of

In this work we construct the element of volume vector r dσ of a surface of constant retarded distance around the trajectory of a charged particle with arbitrary motion in a Riemannian space. This constitutes a generalization of the method pioneered by Synge [1] in special relativity. The technique employed is suggested by the ‘radiation coordinates’ r y introduced by Florides-McCrea-Synge [2, 3] in the study of gravitational radiation.

[1]  M. Roberts The World Function in Robertson-Walker Spacetime , 1999, gr-qc/9905005.

[2]  J. López-Bonilla,et al.  The Lorentz-Dirac equation in curved spaces , 1994 .

[3]  H. Buchdahl Perturbed characteristic functions, II second-order perturbation , 1985 .

[4]  H. Buchdahl,et al.  On the world function of the Godel metric , 1980 .

[5]  H. Buchdahl,et al.  On the world function of the Schwarzschild field , 1979 .

[6]  J. Lathrop On Synge's covariant conservation laws for general relativity , 1975 .

[7]  D. Villarroel Larmor formula in curved spaces , 1975 .

[8]  D. Villarroel Radiation from electrons in curved spaces , 1975 .

[9]  J. Lathrop Covariant description of motion in general relativity , 1973 .

[10]  J. Synge,et al.  Coordinate conditions in a Riemannian space for coordinates based on a subspace , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[11]  J. Synge Point-particles and energy tensors in special relativity , 1970 .

[12]  H. Buchdahl Point Characteristics of Some Static Spherically Symmetric Space-times , 1970 .

[13]  B. Dewitt QUANTUM THEORY OF GRAVITY. III. APPLICATIONS OF THE COVARIANT THEORY. , 1967 .

[14]  J. Synge,et al.  Radiation coordinates in general relativity , 1966, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[15]  J. Synge Optical observations in general relativity , 1960 .

[16]  B. Dewitt,et al.  Radiation damping in a gravitational field , 1960 .

[17]  J. López-Bonilla,et al.  Eigenvectors of the Faraday tensor of a point charge in arbitrary motion , 2001 .

[18]  D. Laugwitz Turning Points in the Conception of Mathematics , 1999 .

[19]  Mohammed-Allal Sinaceur Dedekind et le programme de Riemann. Suivi de la traduction de Analytische Untersuchungen zu Bernhard Riemann's Abhandlungen uber die Hypothesen, welche der Geometrie zu Grunde Liegen par R. Dedekind , 1990 .

[20]  H. Buchdahl Perturbed Characteristic Functions: Application to the Linearized Gravitational Field , 1979 .

[21]  J. Synge Relativity based on chronometry , 1962 .

[22]  J. Synge,et al.  Relativity: The General Theory , 1960 .

[23]  H. S. Ruse Taylor's theorem in the tensor calculus , 1931 .