Partitioning the roles of CYP6G1 and gut microbes in the metabolism of the insecticide imidacloprid in Drosophila melanogaster

[1]  V. Fournier,et al.  Chronic exposure to neonicotinoids reduces honey bee health near corn crops , 2017, Science.

[2]  E. Genersch,et al.  Country-specific effects of neonicotinoid pesticides on honey bees and wild bees , 2017, Science.

[3]  P. Batterham,et al.  Multiple P450s and Variation in Neuronal Genes Underpins the Response to the Insecticide Imidacloprid in a Population of Drosophila melanogaster , 2017, Scientific Reports.

[4]  F. Hilliou,et al.  Resistance evolution in Drosophila: the case of CYP6G1. , 2017, Pest management science.

[5]  C. Welte,et al.  Detoxifying symbionts in agriculturally important pest insects , 2016, Microbial biotechnology.

[6]  Wenlong Yang,et al.  Regulation of Hydroxylation and Nitroreduction Pathways during Metabolism of the Neonicotinoid Insecticide Imidacloprid by Pseudomonas putida. , 2016, Journal of agricultural and food chemistry.

[7]  P. Batterham,et al.  The Wiggle Index: An Open Source Bioassay to Assess Sub-Lethal Insecticide Response in Drosophila melanogaster , 2015, PloS one.

[8]  Eoin L. Brodie,et al.  Gut microbiota mediate caffeine detoxification in the primary insect pest of coffee , 2015, Nature Communications.

[9]  R. Nauen,et al.  The global status of insect resistance to neonicotinoid insecticides. , 2015, Pesticide biochemistry and physiology.

[10]  P. Batterham,et al.  Whole-Genome Expression Analysis in the Third Instar Larval Midgut of Drosophila melanogaster , 2014, G3: Genes, Genomes, Genetics.

[11]  Smriti Sharma,et al.  Assessment of imidacloprid degradation by soil-isolated Bacillus alkalinitrilicus , 2014, Environmental Monitoring and Assessment.

[12]  P. Batterham,et al.  The Molecular Evolution of Cytochrome P450 Genes within and between Drosophila Species , 2014, Genome biology and evolution.

[13]  R. Dukas,et al.  Social attraction mediated by fruit flies' microbiome , 2014, Journal of Experimental Biology.

[14]  P. Batterham,et al.  Dissecting the insect metabolic machinery using twin ion mass spectrometry: a single P450 enzyme metabolizing the insecticide imidacloprid in vivo. , 2014, Analytical chemistry.

[15]  T. Van Leeuwen,et al.  The ABC gene family in arthropods: comparative genomics and role in insecticide transport and resistance. , 2014, Insect biochemistry and molecular biology.

[16]  I. Ferrer,et al.  Identification of imidacloprid metabolites in onion (Allium cepa L.) using high-resolution mass spectrometry and accurate mass tools. , 2013, Rapid communications in mass spectrometry : RCM.

[17]  R. ffrench-Constant,et al.  The Molecular Genetics of Insecticide Resistance , 2013, Genetics.

[18]  Huanzi Zhong,et al.  DNA Sequencing Reveals the Midgut Microbiota of Diamondback Moth, Plutella xylostella (L.) and a Possible Relationship with Insecticide Resistance , 2013, PloS one.

[19]  E. Stokstad Pesticides under fire for risks to pollinators. , 2013, Science.

[20]  J. Casida,et al.  Aldehyde oxidase importance in vivo in xenobiotic metabolism: imidacloprid nitroreduction in mice. , 2013, Toxicological sciences : an official journal of the Society of Toxicology.

[21]  G. Suen,et al.  Mountain Pine Beetles Colonizing Historical and Naïve Host Trees Are Associated with a Bacterial Community Highly Enriched in Genes Contributing to Terpene Metabolism , 2013, Applied and Environmental Microbiology.

[22]  Kathleen A. Durkin,et al.  Neuroactive insecticides: targets, selectivity, resistance, and secondary effects. , 2013, Annual review of entomology.

[23]  P. Batterham,et al.  Using Drosophila melanogaster to validate metabolism-based insecticide resistance from insect pests. , 2012, Insect biochemistry and molecular biology.

[24]  David P. Leader,et al.  FlyAtlas: database of gene expression in the tissues of Drosophila melanogaster , 2012, Nucleic Acids Res..

[25]  J. Eisen,et al.  Yeast Communities of Diverse Drosophila Species: Comparison of Two Symbiont Groups in the Same Hosts , 2012, Applied and Environmental Microbiology.

[26]  T. Fukatsu,et al.  Symbiont-mediated insecticide resistance , 2012, Proceedings of the National Academy of Sciences.

[27]  D. Goulson,et al.  Neonicotinoid Pesticide Reduces Bumble Bee Colony Growth and Queen Production , 2012, Science.

[28]  T. Blacquière,et al.  Neonicotinoids in bees: a review on concentrations, side-effects and risk assessment , 2012, Ecotoxicology.

[29]  R. Nauen,et al.  Overexpression of a cytochrome P450 monooxygenase, CYP6ER1, is associated with resistance to imidacloprid in the brown planthopper, Nilaparvata lugens , 2011, Insect molecular biology.

[30]  Jonathan A. Eisen,et al.  Bacterial Communities of Diverse Drosophila Species: Ecological Context of a Host–Microbe Model System , 2011, PLoS genetics.

[31]  P. Batterham,et al.  The biology of insecticidal activity and resistance. , 2011, Insect biochemistry and molecular biology.

[32]  R. Nauen,et al.  Overview of the status and global strategy for neonicotinoids. , 2011, Journal of agricultural and food chemistry.

[33]  J. Casida,et al.  Unique neonicotinoid binding conformations conferring selective receptor interactions. , 2011, Journal of agricultural and food chemistry.

[34]  M. Goddard,et al.  Copy Number Variation and Transposable Elements Feature in Recent, Ongoing Adaptation at the Cyp6g1 Locus , 2010, PLoS genetics.

[35]  S. Foster,et al.  Amplification of a Cytochrome P450 Gene Is Associated with Resistance to Neonicotinoid Insecticides in the Aphid Myzus persicae , 2010, PLoS genetics.

[36]  Y. Dai,et al.  Metabolism of the Neonicotinoid insecticides acetamiprid and thiacloprid by the yeast Rhodotorula mucilaginosa strain IM-2. , 2010, Journal of agricultural and food chemistry.

[37]  E. Vargo,et al.  Metabolism of Imidacloprid in Workers of Reticulitermes flavipes (Isoptera: Rhinotermitidae) , 2010 .

[38]  J. Oakeshott,et al.  Biotransformation of the neonicotinoid insecticides imidacloprid and thiamethoxam by Pseudomonas sp. 1G. , 2009, Biochemical and biophysical research communications.

[39]  J. Casida,et al.  Molecular recognition of neonicotinoid insecticides: the determinants of life or death. , 2009, Accounts of chemical research.

[40]  J. Casida,et al.  Comparative metabolism and pharmacokinetics of seven neonicotinoid insecticides in spinach. , 2008, Journal of agricultural and food chemistry.

[41]  R. Nauen,et al.  Over-expression of cytochrome P450 CYP6CM1 is associated with high resistance to imidacloprid in the B and Q biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae). , 2008, Insect biochemistry and molecular biology.

[42]  J. Oakeshott,et al.  The enzymatic basis for pesticide bioremediation , 2008, Indian Journal of Microbiology.

[43]  R. ffrench-Constant,et al.  Evaluating the insecticide resistance potential of eight Drosophila melanogaster cytochrome P450 genes by transgenic over-expression. , 2007, Insect biochemistry and molecular biology.

[44]  Alex Andrianopoulos,et al.  Cis-Regulatory Elements in the Accord Retrotransposon Result in Tissue-Specific Expression of the Drosophila melanogaster Insecticide Resistance Gene Cyp6g1 , 2007, Genetics.

[45]  R. Maeda,et al.  An optimized transgenesis system for Drosophila using germ-line-specific φC31 integrases , 2007, Proceedings of the National Academy of Sciences.

[46]  Kevin A Ford,et al.  Chloropyridinyl neonicotinoid insecticides: diverse molecular substituents contribute to facile metabolism in mice. , 2006, Chemical research in toxicology.

[47]  Y. Dai,et al.  Microbial hydroxylation of imidacloprid for the synthesis of highly insecticidal olefin imidacloprid , 2005, Applied Microbiology and Biotechnology.

[48]  L. Belzunces,et al.  In vivo distribution and metabolisation of 14C-imidacloprid in different compartments of Apis mellifera L. , 2004, Pest management science.

[49]  R. ffrench-Constant,et al.  World‐wide survey of an Accord insertion and its association with DDT resistance in Drosophila melanogaster , 2004, Molecular ecology.

[50]  Ralf Nauen,et al.  Identification of biochemical markers linked to neonicotinoid cross resistance in Bemisia tabaci (Hemiptera: Aleyrodidae). , 2003, Archives of insect biochemistry and physiology.

[51]  R. ffrench-Constant,et al.  A Single P450 Allele Associated with Insecticide Resistance in Drosophila , 2002, Science.

[52]  J. Casida,et al.  Imidacloprid insecticide metabolism: human cytochrome P450 isozymes differ in selectivity for imidazolidine oxidation versus nitroimine reduction. , 2002, Toxicology letters.

[53]  R. Nauen,et al.  Toxicity and nicotinic acetylcholine receptor interaction of imidacloprid and its metabolites in Apis mellifera (Hymenoptera: Apidae). , 2001, Pest management science.

[54]  R. Nauen,et al.  Whitefly-active metabolites of imidacloprid: biological efficacy and translocation in cotton plants† , 1999 .

[55]  S. Foster,et al.  The evolution of insecticide resistance in the peach potato aphid, Myzus persicae. , 1998, Insect biochemistry and molecular biology.

[56]  M. Hoy,et al.  Confidence Intervals for the Abbott’s Formula Correction of Bioassay Data for Control Response , 1989 .

[57]  J. Hoekstra Acute bioassays with control mortality , 1987 .

[58]  H. Merzendorfer Chapter One – ABC Transporters and Their Role in Protecting Insects from Pesticides and Their Metabolites , 2014 .

[59]  E. Cohen Target receptors in the control of insect pests , 2013 .

[60]  P. Batterham,et al.  Effects of mutations in Drosophila nicotinic acetylcholine receptor subunits on sensitivity to insecticides targeting nicotinic acetylcholine receptors , 2012 .

[61]  D. Heckel,et al.  Metabolism of imidacloprid and DDT by P450 CYP6G1 expressed in cell cultures of Nicotiana tabacum suggests detoxification of these insecticides in Cyp6g1-overexpressing strains of Drosophila melanogaster, leading to resistance. , 2008, Pest management science.

[62]  H. Miyagawa,et al.  Metabolism of Imidacloprid in Houseflies , 2004 .

[63]  K. Tietjen,et al.  Efficacy of plant metabolites of imidacloprid against Myzus persicae and Aphis gossypii (Homoptera: Aphididae) , 1998 .