Privacy-preserving logistic regression training
暂无分享,去创建一个
[1] Julien Eynard,et al. A Full RNS Variant of FV Like Somewhat Homomorphic Encryption Schemes , 2016, SAC.
[2] Chris Peikert,et al. On Ideal Lattices and Learning with Errors over Rings , 2010, JACM.
[3] Yoshinori Aono,et al. Scalable and Secure Logistic Regression via Homomorphic Encryption , 2016, IACR Cryptol. ePrint Arch..
[4] 貞敏 井桁. 新刊紹介・学会彙報 Bulletin de l'Academie des Sciences de l'URSS , 1939 .
[5] D. Böhning. Multinomial logistic regression algorithm , 1992 .
[6] Carl Bootland,et al. Faster Homomorphic Function Evaluation using Non-Integral Base Encoding , 2017, IACR Cryptol. ePrint Arch..
[7] Vinod Vaikuntanathan,et al. Can homomorphic encryption be practical? , 2011, CCSW '11.
[8] Xiaoqian Jiang,et al. Secure Logistic Regression based on Homomorphic Encryption , 2018, IACR Cryptol. ePrint Arch..
[9] Michael Naehrig,et al. Private Predictive Analysis on Encrypted Medical Data , 2014, IACR Cryptol. ePrint Arch..
[10] B. Lindsay,et al. Monotonicity of quadratic-approximation algorithms , 1988 .
[11] Wouter Castryck,et al. Privacy-friendly Forecasting for the Smart Grid using Homomorphic Encryption and the Group Method of Data Handling , 2017, IACR Cryptol. ePrint Arch..
[12] Yang Wang,et al. PrivLogit: Efficient Privacy-preserving Logistic Regression by Tailoring Numerical Optimizers , 2016, ArXiv.
[13] Wouter Castryck,et al. Homomorphic SIM2D Operations: Single Instruction Much More Data , 2018, IACR Cryptol. ePrint Arch..
[14] Jan Camenisch,et al. Privacy for Distributed Databases via (Un)linkable Pseudonyms , 2017, IACR Cryptol. ePrint Arch..
[15] Martin R. Albrecht,et al. On the concrete hardness of Learning with Errors , 2015, J. Math. Cryptol..
[16] Frederik Vercauteren,et al. Somewhat Practical Fully Homomorphic Encryption , 2012, IACR Cryptol. ePrint Arch..
[17] Peng Wang,et al. Ubiquitous Weak-key Classes of BRW-polynomial Function , 2018, IACR Cryptol. ePrint Arch..